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In this paper, we formalize a type system based on set-theoretic types for dynamic languages that support

both functional and imperative programming paradigms. We adapt prior work in the typing of overloaded

and generic functions to support an impure 𝜆-calculus, focusing on imperative features commonly found in

dynamic languages such as JavaScript, Python, and Julia. We introduce a general notion of parametric opaque

data types using set-theoretic types, enabling precise modeling of mutable data structures while promoting

modularity, clarity, and readability. Finally, we compare our approach to existing work and evaluate our

prototype implementation on a range of examples.

1 Introduction
Dynamic languages usually combine many features that make them challenging to statically type.

In particular, containers like lists or dictionaries can contain heterogeneous data, and functions

may exhibit different behaviors depending on the type of the data they are called on. Set-theoretic

types are particularly suited to express the static behavior of programs written in such languages,

as they provide:

• union, intersection, negation, products, extensible records, and recursive types to character-

ize heterogeneous collections,

• first class arrow types which, combined with the intersection, can express overloaded

behaviors of functions (ad-hoc polymorphism),

• parametric polymorphism necessary to type generic containers and functions,

• a decidable semantic subtyping relation, well suited to structural typing (also known as

duck-typing),
• a decidable constraint solving procedure (tallying) to instantiate type variables.

Some dynamic languages use ideas from set-theoretic types in their specification: this is the case,

to some extent, of Erlang, Elixir, Python, or Ballerina. However, they do not provide a formalization

of types and do not explain how to implement a static type-checker, even though some type-

checkers have been developed or are in development (e.g. eqWAlizer for Erlang, MyPy and PyRight

for Python). This paper aims to provide a general formalism and a reference implementation for

statically typing dynamic languages using set-theoretic types and semantic subtyping.

The typing of generic and overloaded functions in the context of a pure functional language has

already been treated in [Castagna et al. 2024b]. For instance, consider the code below (written in a

syntax close to OCaml):

let filter (f:( 'a -> bool) & ( 'b -> false)) (l:[( 'a| 'b) ∗]) =
match l with
| [] -> []

| e::l -> if f e then e::(filter f l) else filter f l
end

let test_filter = filter (fun x -> (x is int)) [42 ; Null ; true ; 33]
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It defines a function filter taking as input a predicate f and a list l, and returning a list that

contains only the elements of l that satisfy f. For this function, the following type can be inferred:

∀𝛼, 𝛽. (𝛼 → bool) ∧ (𝛽 → false) → [(𝛼 ∨ 𝛽)∗] → [(𝛼 \ 𝛽)∗]
This type mixes both parametric polymorphism (by quantifying over the type variables 𝛼 and 𝛽)

and ad-hoc polymorphism (by using an intersection ∧ for the type of the predicate f). It states that

the parameter f is a function that must cover a domain 𝛼 , for which it returns a boolean, and it

must also cover a domain 𝛽 for which we know it returns false (this domain 𝛽 can be instantiated

with the empty type if we don’t have such guarantees about f). Moreover, the parameter l must be

a list composed of any number of elements of type 𝛼 ∨ 𝛽 (list types are defined using recursive

types, and support the regular expression operators). In return, the function filter will return a

list composed of any number of elements of type 𝛼 \ 𝛽 . Note that, in order to be able to derive such

a type, the type system must perform type narrowing (or occurrence typing [Tobin-Hochstadt and

Felleisen 2010]) in order to deduce that the occurrence of e in the then branch has type 𝛼 \ 𝛽 .
Deriving this type for the filter function is interesting because it captures the fact that the

resulting list only contains elements from l that may satisfy f. When typing the definition

test_filter, the type (int → true) ∧ (¬int → false) can be inferred for the anonymous

function (fun x -> (x is int)). Together with the precise typing of filter, this makes it possi-

ble to derive the type [int∗] for test_filter. This pattern, where a heterogeneous list is filtered
to keep only elements of a given type, is quite idiomatic of dynamic languages (this happens, for

instance, when filtering out null elements from a list). The type system of [Castagna et al. 2024b]

is capable of deriving such types for these two definitions, but it crucially relies on the fact that the

source language is pure. In particular, it requires that, if a source expression 𝑒 has type 𝑡1 ∨ 𝑡2, then
all of its occurrences must reduce to values that all have type 𝑡1 or all have type 𝑡2.

Our paper adapts and extends this work to support impure languages, and focus on the imperative

features that many dynamic languages have (e.g. JavaScript, Python, R, Julia), such as mutable

variables. In those languages, the filter function, written above in a functional style, could also

be written in an imperative style:

let filter_imp (f:( 'a -> bool) & ( 'b -> false)) (arr:array ( 'a| 'b)) =
let res = array () in
let mut i = 0 in
while i < (len arr) do
let e = arr[i] in
if f e do push res e end ;
i := i + 1

end ;
return res

Though this function achieves a similar goal as filter, it does it in a very different way: instead

of building its result through a recursive call, filter_imp builds it by mutating the resizable array

res successively using control flow (here, a while loop). In this code, array is an opaque data type

used to model resizable arrays. It takes as parameter a type that represents the values that the array

can contain. For this filter_imp function, our type system is able to derive the following type:

∀𝛼, 𝛽,𝛾 . (𝛼 → bool) ∧ (𝛽 → false) → array(𝛼 ∨ 𝛽) → array(𝛼 \ 𝛽 ∨ 𝛾)
As in the filter example, our type system is able to infer that the resulting array does not

contain elements that do not satisfy the predicate f. Note the presence of an additional type variable

𝛾 in the type of the result, array(𝛼 \ 𝛽 ∨𝛾). This union with 𝛾 is necessary for the type of the result
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to be as general as possible. Indeed, the parameter 𝛼 of the type array(𝛼) is invariant: array(𝑡) is
a subtype of array(𝑠) if and only if 𝑡 and 𝑠 are equivalent. Consequently, assuming we have in our

environment an array arr of type array(int), the expression push arr true is untypeable as arr
cannot be converted to array(int ∨ bool) by subtyping. However, as the function filter_imp

returns a new array (distinct from the one given as input), we should be able to enlarge the type of

its content to suit our needs: we expect push (filter_imp f arr) true (for some predicate f) to

be typeable. This is possible with the type inferred for filter_imp by instantiating 𝛾 with bool.
Our paper is the first to formalize a polymorphic type system based on set-theoretic types for

imperative languages. Our contributions are the following:

• A formal type system for a non-deterministic 𝜆-calculus (Section 2) incorporating: type

narrowing via union elimination, prenex parametric polymorphism à la Hindley-Milner,
and ad-hoc polymorphism via intersection introduction. We first present it declaratively

and prove type safety (Section 3.1), followed by an equivalent algorithmic version that

introduces annotations (Section 3.2).

• A type inference capable of reconstructing the domain(s) of generic and overloaded functions

using a tallying-based approach
1
(Section 3.3).

• A notion of opaque data types, the associated subtyping relations, and their proofs of

soundness. This allows us to represent mutable data structures such as references, arrays,

and dictionaries (Section 4.1) thanks to the value restriction (Section 4.2).

• MLsem, a prototype implementation of our type system for a functional-imperative language

with a type-case construct. It supports several extensions, such as pattern matching and

recursive functions (Section 5), and performs program transformations in order to achieve

flow-sensitive typing in the presence of mutable variables and imperative control flow

primitives (break, return, etc.). This prototype serves as a proof of concept to demonstrate

that: (𝑖) even though our core calculus is mostly functional (for instance, it has no builtin

notion of mutable variable), it can still be used to encode imperative features, and (𝑖𝑖) our
type system is sufficiently powerful and general to type these encoded programs.

2 Types and language
2.1 Types
Our type system relies on the set-theoretic types theory, introduced by [Frisch 2004] and later

extended with type variables [Castagna et al. 2014].

Definition 2.1 (Set-theoretic types). The set T of set-theoretic types is the set of regular and

contractive terms coinductively defined by the following grammar:

Types 𝑡 ::= 𝑏 | 𝛼 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∨ 𝑡 | 𝑡 ∧ 𝑡 | ¬𝑡 | 0 | 1

where 𝑏 ∈ B is a base type and 𝛼 ∈ V is a type variable. The notation 𝑡1 \ 𝑡2 is a syntactic sugar for
𝑡1 ∧ ¬𝑡2. When writing a term, we use the following precedence (by decreasing priority): ¬, \, ∧, ∨,
×, →.

The set B of base types and the set V of type variables are fixed. Types are ranged over by

meta-variables 𝑡 and 𝑠 . For each constant of the language, B contains the associated singleton type.
It also contains some usual (non-singleton) types like bool and int.

1
Tallying is similar to unification, but with subtyping constraints instead of syntactic equivalence [Castagna et al. 2014].
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As they are defined coinductively, types can be infinite trees, provided that they satisfy the

constraints of regularity and contractivity explained below. This yields a definition of equirecursive

types that does not require explicit binders for recursion.

A term is said regular if it only has a finite number of distinct subterms, and contractive if

every infinite branch goes through an infinite number of arrows and products (→ and ×). The
contractivity constraint ensures that every type has a meaningful interpretation: for instance, it

prevents from expressing types such as the one satisfying the equation 𝑡 = ¬𝑡 . The regularity
constraint ensures decidability of the subtyping relation that we define below.

The type 0 is a special type that is not inhabited by any value, and is the subtype of all types.

Conversely, the type 1 is the supertype of all types.

The × constructor is used to type pairs of our language. Intuitively, it corresponds to the Cartesian

product of two types. In particular, the product 1 × 1 is the supertype of all pairs: any well-typed

pair can be typed with 1 × 1.
The → constructor is used to type functions (i.e., 𝜆-abstractions). Intuitively, a 𝜆-abstraction has

type 𝑡1 → 𝑡2 if and only if it accepts as argument a value of type 𝑡1, in which case either it yields a

value of type 𝑡2 or it diverges. The type 0 → 1 is the supertype of all functions.

Type variables 𝛼 can be used by the type system to handle parametric polymorphism. However,

at the level of the type algebra, type variables are not quantified: this will be handled by the type

system. For any type 𝑡 , we note vars(𝑡) the set of type variables occurring in 𝑡 .

Definition 2.2 (Type substitution). A type substitution is a function 𝜙 : V → T from type variables

to types which is the identity everywhere except for a finite set of type variables, called its domain

and denoted by dom(𝜙).

We use the symbol Φ to range over sets of substitutions.

Definition 2.3 (Application of a type substitution). The result of the application of a type substitu-

tion 𝜙 to a type 𝑡 , noted 𝑡𝜙 , is the type satisfying these equations:

𝑏𝜙 = 𝑏 (𝑡1 × 𝑡2)𝜙 = (𝑡1𝜙) × (𝑡2𝜙) (𝑡1 ∨ 𝑡2)𝜙 = (𝑡1𝜙) ∨ (𝑡2𝜙)
1𝜙 = 1 (𝑡1 → 𝑡2)𝜙 = (𝑡1𝜙) → (𝑡2𝜙) (𝑡1 ∧ 𝑡2)𝜙 = (𝑡1𝜙) ∧ (𝑡2𝜙)
0𝜙 = 0 𝛼𝜙 = 𝜙 (𝛼) (¬𝑡)𝜙 = ¬(𝑡𝜙)

Note that this system of equations has a unique solution, and this solution is a type as defined

by Definition 2.1 (in particular, it is contractive and regular).

A decidable subtyping relation ≤ (usually referred to as semantic subtyping) can be defined for

set-theoretic types (cf. Appendix A for more details). For this presentation, it suffices to consider

that ground types (i.e., types with no variables) are interpreted as sets of values that have that type

in an interpretation domainD, and that subtyping is set containment. Type connectives (i.e., union,

intersection, negation) are interpreted as the corresponding set-theoretic operators. For non-ground

types, the subtyping relation is preserved by type-substitutions: if 𝑡1 ≤ 𝑡2, then 𝑡1𝜙 ≤ 𝑡2𝜙 for every

type-substitution 𝜙 . We note ≃ the semantic equivalence: 𝑡1 ≃ 𝑡2 if and only if 𝑡1 ≤ 𝑡2 and 𝑡2 ≤ 𝑡1.

2.2 Language syntax
Definition 2.4 (Syntax of the core language). The expressions and values of our core language are

the finite terms produced by the following grammar:

Expression 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒 | let𝑥 = 𝑒 in 𝑒 | 𝑒 ⊕ 𝑒
Value 𝑣 ::= 𝑐 | 𝜆𝑥 .𝑒 | (𝑣, 𝑣)

where 𝜏 is a test type, that is, a ground type that does not feature any arrow except 0 → 1.
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Definition 2.5 (Test type). A test type is a type produced by the following grammar:

Test Type 𝜏 ::= 𝑏 | 0 → 1 | 𝜏 × 𝜏 | 𝜏 ∨ 𝜏 | 𝜏 ∧ 𝜏 | ¬𝜏 | 0 | 1

Expressions of our language are 𝜆-expressions with constants 𝑐 , variables 𝑥 , 𝜆-abstractions 𝜆𝑥 .𝑒 ,

applications 𝑒 𝑒 , pairs (𝑒, 𝑒), pair projections 𝜋𝑖𝑒 , type-cases (𝑒∈𝜏) ? 𝑒 : 𝑒 , let-bindings let𝑥 = 𝑒 in 𝑒 ,
and non-deterministic choices 𝑒 ⊕ 𝑒 .

A type-case (𝑒0∈𝜏) ? 𝑒1 : 𝑒2 is a dynamic type test that evaluates either 𝑒1 or 𝑒2 depending on the

type of the value resulting from the evaluation of 𝑒0. Type-cases cannot test arbitrary types but just

ground types (i.e., types without type variables occurring in them) where the only arrow type that

can occur is 0 → 1 (the supertype of all functions). This means that type-cases cannot distinguish

functions that have a type 𝑠 → 𝑡 from those that have not. This restriction is necessary in order to

give our language a proper semantics: having full type tests of the form 𝑣 ∈ 𝑡 would entail that

we must be able to check at run-time the types of 𝜆-abstractions. While it is possible in languages

such as CDuce, where 𝜆-abstractions are monomorphic and are decorated with their static type,

the problem is more complex for us as we consider unannotated 𝜆-abstractions that may be typed

in many different ways. We believe this restriction to be acceptable since the dynamic languages

we want to model can test at run-time whether a value is a function but cannot have more precise

information.

The role of let-bindings let𝑥 = 𝑒1 in 𝑒2 in our core calculus is twofold (cf. Section 3): (𝑖) they
will be used to implement let-polymorphism [Milner 1978], and (𝑖𝑖) they will play a central role in

our implementation of type narrowing.

Finally, non-deterministic choices 𝑒⊕𝑒 are added to our calculus in order to model some behaviors

of imperative languages, such as IO. It addresses limitations of prior work [Castagna et al. 2024b],

where the soundness of the type system crucially relies on the purity of the language. Our type

system does not: Theorem 3.3 (type safety) shows that our system is safe even in the presence of

non-deterministic behaviors.

2.3 Language dynamic semantics
The reduction semantics for our expressions is the usual call-by-value reduction semantics, together

with the context rules that implement a leftmost outermost reduction strategy. Our reduction

semantics is non-deterministic (several reduction steps may be applicable) because of choice

expressions 𝑒 ⊕ 𝑒 . This semantics is formalized in Figure 1.

The relation 𝑣 ∈ 𝜏 determines whether a value is of a given type or not. Note that typeof (𝑣)
maps every 𝜆-abstraction to 0 → 1 and, thus, dynamic type tests do not depend on static type

inference, nor do they require subtyping to be performed at runtime. This approximation is allowed

by the restriction on arrow types in the types 𝜏 used in type-cases.

Given a reduction step relation{, we write 𝑒 {∗ 𝑒′ when there exists a sequence of{ steps

of any length from 𝑒 to 𝑒′ (we say that 𝑒 can reduce to 𝑒′). We write 𝑒 {∞
when there exists a

sequence of { steps starting from 𝑒 and that can be prolonged indefinitely (we say that 𝑒 can

diverge).

3 Static semantics
3.1 Declarative type system
In order to implement parametric polymorphism, we reuse the notion of type schemes used in

Hindley-Milner type systems. Intuitively, the type scheme ∀®𝛼.𝑡 , where ®𝛼 is a set of type variables,

is a syntactic object that denotes the infinite set of types 𝑡𝜙 for all type substitutions 𝜙 such that

dom(𝜙) ⊆ ®𝛼 . Note that these types 𝑡𝜙 may still contain (unquantified) type variables. We use the

symbol 𝜎 to range over type schemes.

https://www.cduce.org
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Reduction rules
(𝜆𝑥.𝑒)𝑣 { 𝑒{𝑣/𝑥}

let𝑥 = 𝑣 in 𝑒 { 𝑒{𝑣/𝑥}
𝜋1 (𝑣1, 𝑣2) { 𝑣1

𝜋2 (𝑣1, 𝑣2) { 𝑣2

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒1 if 𝑣 ∈ 𝜏
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒2 if 𝑣 ∈ ¬𝜏

𝑒1 ⊕ 𝑒2 { 𝑒1

𝑒1 ⊕ 𝑒2 { 𝑒2

Dynamic type test

𝑣 ∈ 𝑡 ⇔ typeof (𝑣) ≤ 𝑡 , where


typeof (𝑐) = b𝑐
typeof ((𝑣1, 𝑣2)) = typeof (𝑣1) × typeof (𝑣2)
typeof (𝜆𝑥.𝑒) =0 → 1

Evaluation Contexts

𝐸 ::= [ ] | 𝑣 𝐸 | 𝐸 𝑒 | (𝑣, 𝐸) | (𝐸, 𝑒) | 𝜋𝑖𝐸 | (𝐸∈𝜏) ? 𝑒 : 𝑒 | let𝑥 =𝐸 in 𝑒
𝑒 { 𝑒′

𝐸 [𝑒] { 𝐸 [𝑒′]

Fig. 1. Semantics of the source language

Definition 3.1 (Type environment). A type environment Σ is a finite mapping from variables of

our language to type schemes. We note (Σ, 𝑥 : 𝜎) the extension of Σ that maps 𝑥 to 𝜎 , with the

condition that 𝑥 is not already in the domain of Σ.

Definition 3.2 (Free type variables). The free type variables vars(𝜎) of a type scheme 𝜎 and the

free type variables vars(Σ) of a type environment Σ are defined as follows:

vars(∀®𝛼.𝑡) =
def

vars(𝑡) \ ®𝛼

vars(Σ) =
def

⋃
(𝑥 :𝜎 ) ∈Σ vars(𝜎)

The disjointness between two sets of type variables ®𝛼1 and ®𝛼2 is noted ®𝛼1#®𝛼2.

Our type system is formalized in full in Figure 2. Judgments are of the form Σ ⊢ 𝑒 : 𝑡 . Note

that a judgment derives a type 𝑡 and not a type scheme 𝜎 (type schemes only appear in type

environments).

A variable 𝑥 is typed by the rule [Var] that retrieves the type scheme associated to 𝑥 in the

environment Σ. As said before, a type scheme ∀®𝛼.𝑡 intuitively denotes the infinite set of types 𝑡𝜙

(with dom(𝜙) ⊆ ®𝛼), and the [Var] rule can derive any of those instances.

A non-deterministic choice 𝑒1 ⊕ 𝑒2 is typed by typing both 𝑒1 and 𝑒2 and returning (the union of)

their type. Note that we do not need to write an explicit union in the [Choose] rule as unions can

already be introduced by subtyping ([≤] rule): a type 𝑡1 can be turned into 𝑡1 ∨ 𝑡2 as 𝑡1 ≤ 𝑡1 ∨ 𝑡2.
Likewise, we do not need an intersection elimination rule: a type 𝑡1 ∧ 𝑡2 can be turned into 𝑡1 (or

into 𝑡2) using the [≤] rule.
The arrow and product constructors have introduction and elimination rules. Note that, in the

case of [→I], the variable 𝑥 must not already be in dom(Σ) in order for Σ, 𝑥 : 𝑠 to be defined, but

𝛼-renaming can be applied implicitly on expressions whenever needed.

Type-cases are handled by the rule [∈], which can avoid typing a branch if this branch cannot

possibly be taken, that is, if the type of the tested expression 𝑒 is disjoint with the test type captured

by the branch (𝜏 for the first branch, ¬𝜏 for the second branch).

The rules for intersection ([∧]) and subtyping ([≤]) are the classical ones.
The most interesting rule is the rule for let-bindings, [Let]. A first feature of this rule is that

it can decompose the type 𝑠 of 𝑒1 into a disjunction

∨
𝑖∈𝐼 𝑠 ∧ 𝑠𝑖 (the side-condition 𝑠 ≤ ∨

𝑖∈𝐼 𝑠𝑖
ensures that this decomposition covers 𝑠), and then type 𝑒2 under the environment Σ, 𝑥 : 𝑠 ∧ 𝑠𝑖
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[Var]

Σ(𝑥) = ∀®𝛼.𝑡
Σ ⊢ 𝑥 : 𝑡𝜙

dom(𝜙) ⊆ ®𝛼 [Const]

Σ ⊢ 𝑐 : b𝑐
[Choose]

Σ ⊢ 𝑒1 : 𝑡 Σ ⊢ 𝑒2 : 𝑡

Σ ⊢ 𝑒1 ⊕ 𝑒2 : 𝑡

[Let]

Σ ⊢ 𝑒1 : 𝑠 (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡

Σ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖

®𝛼#vars(Σ), ∀𝑖 ∈ 𝐼 . ®𝛼#vars(𝑠𝑖 )

[→I]

Σ, 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡

Σ ⊢ 𝜆𝑥.𝑒 : 𝑠 → 𝑡
[→E]

Σ ⊢ 𝑒1 : 𝑡1 → 𝑡2 Σ ⊢ 𝑒2 : 𝑡1

Σ ⊢ 𝑒1𝑒2 : 𝑡2

[×I]
Σ ⊢ 𝑒1 : 𝑡1 Σ ⊢ 𝑒2 : 𝑡2

Σ ⊢ (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1]

Σ ⊢ 𝑒 : 𝑡1 × 𝑡2
Σ ⊢ 𝜋1𝑒 : 𝑡1

[×E2]

Σ ⊢ 𝑒 : 𝑡1 × 𝑡2
Σ ⊢ 𝜋2𝑒 : 𝑡2

[∈]
Σ ⊢ 𝑒 : 𝑠 𝑠 ∧ 𝜏 ; 0 ⇒ Σ ⊢ 𝑒1 : 𝑡 𝑠 \ 𝜏 ; 0 ⇒ Σ ⊢ 𝑒2 : 𝑡

Σ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡

[∧]
Σ ⊢ 𝑒 : 𝑡1 Σ ⊢ 𝑒 : 𝑡2

Σ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2
[≤]

Σ ⊢ 𝑒 : 𝑡

Σ ⊢ 𝑒 : 𝑡 ′
𝑡 ≤ 𝑡 ′

Fig. 2. Declarative type system

for each 𝑖 ∈ 𝐼 independently. This is a restricted form of the union elimination rule [MacQueen

et al. 1986], used to implement type narrowing as it is done in [Castagna et al. 2024b], but that

only applies on let-definitions. This restriction, in addition to making the implementation of the

type system simpler, is justified by the presence of non-determinism in our language. Indeed, in

a pure language, two occurrences of the same expression will reduce to the same value: thus it

is sound to derive the type true × true ∨ false × false for the expression (𝑓 42, 𝑓 42) under
the environment 𝑓 : 1 → bool. However, this is not true anymore in our setting, as the function

𝑓 could be non-deterministic (for instance it could be defined as 𝜆𝑥.true ⊕ false). In order to

regain soundness, we restrict the union elimination rule to only decompose the type of variables

(which is sound as two occurrences of the same variable hold the same value), instead of arbitrary

expressions.

A second aspect of the [Let] rule is that it can generalize some type variables ®𝛼 of 𝑠 . There are

two restrictions on ®𝛼 : (𝑖) type variables in ®𝛼 must not be bound to the environment Σ, and (𝑖𝑖) type
variables in ®𝛼 must not appear in any of the 𝑠𝑖 used to decompose the type 𝑠 . The first restriction is

standard and prevents the generalization of a type variable that may be bound to the parameter of

a 𝜆-abstraction we are currently typing. For instance, when typing the identity 𝜆𝑥 .let𝑦 =𝑥 in𝑦
for the domain 𝑥 : 𝛼 , it would be unsound to associate the type scheme ∀𝛼.𝛼 to 𝑦 as it would

allow deriving the type 𝛼 → 0 for this function. The second restriction prevents unsound type

decompositions. For instance, it would be unsound to decompose the type 1 into the two types

schemes ∀𝛼.𝛼 and ∀𝛼.¬𝛼 .

Theorem 3.3 (Type safety). For every expression 𝑒 and test type 𝜏 , if ∅ ⊢ 𝑒 : 𝜏 , then for any 𝑒′

such that 𝑒 {∗ 𝑒′, we have either 𝑒′ {∗ 𝑣 for some 𝑣 ∈ 𝜏 or 𝑒′ {∞.

This theorem states that if an expression is well-typed (of test type 𝜏 ), then all possible reduction

sequences either diverge or reduce to a value of type 𝜏 . Notice that this type safety theorem holds for

a test type 𝜏 instead of an arbitrary type 𝑡 . Indeed, only test types are guaranteed to be preserved by
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reduction: in particular, because of the type decomposition performed in the [Let] rule, a negative

arrow type (e.g. ¬(int → int)) may be derivable for an expression before reduction, but not after.

This is explained in Appendix B, followed by the proof of Theorem 3.3.

3.2 Algorithmic type system
The declarative type system defined in Section 3.1 is not algorithmic for two reasons: (𝑖) the [≤] and
[∧] rules are not syntax directed (they can apply on any expression), and (𝑖𝑖) the rules [Var], [→I],

[Let] and [≤] are not analytic, meaning that some inputs of their premises cannot be determined

by the inputs of their conclusion.

In order to make the type system algorithmic, we apply two ideas from prior work. First, we

get rid of the [≤] rule by inlining it in other rules whenever needed (applications, projections, and

type-cases), and introduce new type operators (two for applications, and two others for projections)

to make it analytic. This is standard fares when using set-theoretic types [Castagna et al. 2015;

Frisch 2004]. Second, we give an additional input to the type system, consisting in an annotation

tree that specifies when to apply the [∧] rule, which substitution to use for the [Var] rule, which

domain to use for the [→I] rule, and which type decomposition to perform for the [Let] rule. The

use of separate annotations, instead of annotations directly inserted in the expression to type, is

justified by the tree structure of our derivations: for instance, when deriving an intersection type

for an overloaded function, the same 𝜆-abstraction will be typed multiple times but with different

domains (and thus, different annotations). This idea of using a separate annotation tree is taken

from [Castagna et al. 2024b], though the shape of the annotations have been adapted to our setting.

This annotation tree is not meant to be provided by the programmer, but to be inferred from an

expression using a reconstruction algorithm inspired by algorithmW [Damas and Milner 1982]

(cf. Section 3.3).

Annotations 𝑎 ::= ∅ | var(𝜙) | let (𝑎, {(𝑡, 𝑎), ..., (𝑡, 𝑎)}) | @(𝑎, 𝑎) | 𝜋 (𝑎) | × (𝑎, 𝑎)
| ∈(𝑎, 𝑏, 𝑏) | 𝜆(𝑡, 𝑎) | ⊕(𝑎, 𝑎) | ∧({𝑎, ..., 𝑎})

Branch annotations 𝑏 ::= type(𝑎) | skip

The full algorithmic type system is formalized in Figure 3. Judgments have the form Σ ⊢A [𝑒 | 𝑎] : 𝑡 ,

where Σ is the current type environment, 𝑒 is the expression to type, 𝑎 is the associated annotation

tree, and 𝑡 is the derived type.

For the case of applications and projections, the algorithmic type system relies on these type

operators:

dom(𝑡) =
def

max{𝑢 | 𝑡 ≤ 𝑢 → 1}
𝑡 ◦ 𝑠 =

def

min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢} where 𝑠 ≤ dom(𝑡)
𝝅1 (𝑡 ′) =

def

min{𝑢 | 𝑡 ′ ≤ 𝑢 × 1}
𝝅2 (𝑡 ′) =

def

min{𝑢 | 𝑡 ′ ≤ 1 × 𝑢}

where 𝑡 ≤ 0 → 1 and 𝑡 ′ ≤ 1 × 1. These type operators are computable, for more details the reader

can refer to [Frisch 2004].

Branches of type-cases are typed with the rules [Skip-A] and [Type-A]. A branch annotated with

skip is given the type 0 without even looking the associated expression, and the rule for type-cases

[∈-A] is responsible for checking that only unreachable branches are annotated with skip.
Finally, the [Let-A] rule generalizes as many type variables as possible.

This algorithmic type system is equivalent to the declarative one, meaning that an expression is

typeable with the declarative type system if and only if there exists an annotation tree that makes

it typeable with the algorithmic type system.
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[Const-A]

Σ ⊢A [𝑐 | ∅] : b𝑐
[Var-A]

Σ(𝑥) = ∀®𝛼.𝑡
Σ ⊢A [𝑥 | var(𝜙)] : 𝑡𝜙

dom(𝜙) ⊆ ®𝛼

[Let-A]

Σ ⊢A [𝑒1 | 𝑎] : 𝑠 ®𝛼 = vars(𝑠) \ (vars(Σ) ∪⋃
𝑖∈𝐼 vars(𝑠𝑖 ))

(∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢A [𝑒2 | 𝑎𝑖 ] : 𝑡𝑖

Σ ⊢A [let𝑥 = 𝑒1 in 𝑒2 | let (𝑎, {(𝑠𝑖 , 𝑎𝑖 )}𝑖∈𝐼 )] :

∨
𝑖∈𝐼 𝑡𝑖

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖

[→I-A]

Σ, 𝑥 : 𝑠 ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝜆𝑥.𝑒 | 𝜆(𝑠, 𝑎)] : 𝑠 → 𝑡
[→E-A]

Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [𝑒1𝑒2 | @(𝑎1, 𝑎2)] : 𝑡1 ◦ 𝑡2
𝑡1 ≤ 0 → 1
𝑡2 ≤ dom(𝑡1)

[×I-A]
Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [(𝑒1, 𝑒2) | × (𝑎1, 𝑎2)] : 𝑡1 × 𝑡2
[×E𝑖 -A]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝜋𝑖𝑒 | 𝜋 (𝑎)] : 𝝅 𝑖 (𝑡)
𝑖 ∈ {1, 2}
𝑡 ≤ (1 × 1)

[∈-A]

Σ ⊢A [𝑒 | 𝑎] : 𝑠

𝑏1 = skip ⇒ 𝑠 ≤ ¬𝜏 𝑏2 = skip ⇒ 𝑠 ≤ 𝜏 Σ ⊢A [𝑒1 | 𝑏1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑏2] : 𝑡2

Σ ⊢A [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈(𝑎, 𝑏1, 𝑏2)] : 𝑡1 ∨ 𝑡2

[Choose-A]

Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [𝑒1 ⊕ 𝑒2 | ⊕(𝑎1, 𝑎2)] : 𝑡1 ∨ 𝑡2
[∧-A]

(∀𝑖 ∈ 𝐼 ) Σ ⊢A [𝑒 | 𝑎𝑖 ] : 𝑡𝑖

Σ ⊢A [𝑒 | ∧({𝑎𝑖 }𝑖∈𝐼 )] :

∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅

[Skip-A]

Σ ⊢A [𝑒 | skip] : 0
[Type-A]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝑒 | type(𝑎)] : 𝑡

Fig. 3. Algorithmic type system

Theorem 3.4 (Eqivalence with the declarative type system). Let 𝑒 be an expression, Σ a
type environment, and 𝑡 a type.

Σ ⊢ 𝑒 : 𝑡 ⇔ ∃𝑎, 𝑡 ′ . Σ ⊢A [𝑒 | 𝑎] : 𝑡 ′ and 𝑡 ′ ≤ 𝑡

A proof of this theorem can be found in Appendix C.

3.3 Annotation tree reconstruction
The annotation tree used by the algorithmic type system is too complex to be provided directly

by the programmer, thus it must be automatically reconstructed (though the programmer may

help this process by annotating some functions with their domain). In this section, we propose an

algorithm that reconstructs an annotation tree 𝑎 from an expression 𝑒 . This algorithm is inspired

by Hindley-Milner systems, in particular algorithm W [Damas and Milner 1982] and its inference

by unification. In our setting, however, we have semantic subtyping, and the syntactic constraints

used in unification must be replaced by subtyping constraints: this is what tallying [Castagna et al.

2015] does.

3.3.1 Tallying. While unification consists, for two types 𝑠 and 𝑡 , in finding the type substitutions 𝜙

such that 𝑠𝜙 and 𝑡𝜙 are syntactically equivalent, tallying consists in finding the type substitutions

𝜙 such that 𝑠𝜙 ≤ 𝑡𝜙 .
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Definition 3.5 (Tallying problem). Let 𝐶 be a finite set of constraints {(𝑠𝑖 ¤≤ 𝑡𝑖 )}𝑖∈𝐼 . A type

substitution 𝜙 is a solution to the tallying problem 𝐶 , noted 𝐶 ⊩ 𝜙 , if and only if ∀𝑖 ∈ 𝐼 . 𝑠𝑖𝜙 ≤ 𝑡𝑖𝜙 .

Note that tallying is usually defined with an additional input Δ that specifies the set of monomor-
phic type variables (i.e. the type variables that must not be substituted), but this is unnecessary

in our setting. Solutions to a tallying problem are characterized by a principal finite set of type

substitutions. We use the notation 𝐶 ⊩ Φ to state that the finite set of substitutions Φ is a principal

solution of the tallying instance 𝐶 .

Proposition 3.6 (Principality). For every tallying problem 𝐶 , the set of all solutions can be
characterized by a finite set of type substitutions Φ such that:

∀𝜙 ∈ Φ. 𝐶 ⊩ 𝜙 (soundness)

∀𝜙 ′′ . 𝐶 ⊩ 𝜙 ′′ ⇒ ∃𝜙 ∈ Φ. ∃𝜙 ′ . 𝜙 ′′ ≃ 𝜙 ′ ◦ 𝜙 (completeness)

An algorithm that computes a principal set of substitutions for any tallying problem is described

in [Castagna et al. 2015].

3.3.2 Reconstruction algorithm. At a high level, the type inference algorithm can be seen as a

classical one. A rule will recursively try to type the sub-expressions of its argument. The result

of typing the sub-expressions are then combined to form an annotation for the algorithmic type

system, or the reconstruction fails if some sub-expressions cannot be typed.

To type an expression, our reconstruction algorithm proceeds similarly to the algorithm W
[Damas and Milner 1982]: when it enters a 𝜆-abstraction, its parameter is typed with a fresh

type variable. Then, when this parameter is used in the body (in an application or projection), a

constraint is generated and solved using tallying. The difficulty in our setting stems from the nature

of the tallying procedure, which returns a set of (possibly incompatible) substitutions. Contrary to

algorithm W, where unification returns at most one principal substitution and can thus be used to

accumulate constraints on type variables by only going forward, our algorithm needs, when given

a set of substitutions by the tallying procedure, to backtrack "high enough" in the term (at the place

where the type variables are introduced) and retries typing several times, using the newly found

substitutions.

Our reconstruction algorithm incrementally builds an annotation as it walks through the expres-

sion. It is initially called on the annotation ?, which is then incrementally refined into an annotation

for the algorithmic type system. The intermediate annotations 𝑎 manipulated by the reconstruction

algorithm follow this grammar:

Partial annotations 𝑎 ::= ? | 𝑎 | untyp | ∧̄(𝐼 )
| ¯let (𝑎,𝑈 ) | @̄(𝑎, 𝑎) | 𝜋 (𝑎) | ×̄(𝑎, 𝑎) | ∈̄(𝑎, ¯𝑏, ¯𝑏) | ¯𝜆(𝑡, 𝑎)

Branch partial annotations ¯𝑏 ::= ? | 𝑏 | ¯type(𝑎)
Inter partial annotations 𝐼 ::= {𝑎, ..., 𝑎}
Union partial annotations 𝑈 ::= {(𝑡, 𝑎), ..., (𝑡, 𝑎)}

We present this algorithm as a system of deduction rules. Judgments have the form Σ ⊢∗R
[𝑒 | 𝑎] ⇒ R, where R is a result, of the form:

Result R ::= Ok(𝑎, 𝑡) | Fail | Subst(Φ, 𝑎, 𝑎)

Ok(𝑎, 𝑡) means that the reconstruction has succeeded, the annotation it produced is 𝑎 and the

associated type derived by the algorithmic type system is 𝑡 .

Fail means that the reconstruction failed (either the expression is untypeable, or it is typeable but

the reconstruction algorithm failed to find a suitable annotation tree).
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Subst(Φ, 𝑎1, 𝑎2) means that some substitutions should be applied to the current environment Σ
before resuming the reconstruction. More precisely, the reconstruction algorithm should be

called again several times: (𝑖) on the current environment Σ using partial annotation 𝑎2

(general case), and (𝑖𝑖) for every substitution 𝜙 ∈ Φ, on the environment Σ𝜙 using partial

annotation 𝑎1𝜙 .

Formally, our algorithm is composed of two judgments: (𝑖) a structural judgment Σ ⊢R [𝑒 | 𝑎] ⇒
R with an associated set of structural rules, which represents a reconstruction step from the partial

annotation 𝑎, and (𝑖𝑖) a threading judgment Σ ⊢∗R [𝑒 | 𝑎] ⇒ R with an associated set of threading

rules, whose only job is to backtrack appropriately whenever a set of substitutions is returned by

some tallying problem. Both sets of rules are mutually recursive: whenever a structural rule needs

to type a sub-expression, it does so by calling a threading rule, giving the algorithm the opportunity

to backtrack to that point ; conversely, whenever a threading rule receives an expression to type

and multiple substitutions, it will use structural rules to type the expression several times and

combine the results.

The complete type system features many rules (all given in Appendix D). Most of them are

bureaucratic. We focus our presentation on some of the key rules which illustrate the essence of

the algorithm.

Threading rules. These rules are responsible for recursively calling the reconstruction algorithm

again when a Subst(Φ, 𝑎1, 𝑎2) has been issued and that all substitutions in Φ have a domain disjoint

with Σ (meaning that we do not need to backtrack further). In this case, the following rule applies:

[Subst-R]

Σ ⊢R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎1, 𝑎2)
Σ ⊢∗R [𝑒 | ∧̄({𝑎1𝜙 | 𝜙 ∈ Φ} ∪ {𝑎2})] ⇒ R

Σ ⊢∗R [𝑒 | 𝑎] ⇒ R
∀𝜙 ∈ Φ. dom(𝜙)#vars(Σ)

The different annotations on which we want to call the reconstruction algorithm are regrouped

within an intersection annotation

∧̄({𝑎1𝜙 | 𝜙 ∈ Φ} ∪ {𝑎2}). The notation 𝑎1𝜙 corresponds to the

annotation 𝑎1 where every type 𝑡 has been replaced by 𝑡𝜙 , and every substitution 𝜙 ′
has been

replaced by the substitution {𝛼 { 𝑡𝜙 | (𝛼 { 𝑡) ∈ 𝜙 ′}.

[Propagate-R]

Σ ⊢R [𝑒 | 𝑎] ⇒ R

Σ ⊢∗R [𝑒 | 𝑎] ⇒ R

If the result is a Ok(𝑎, 𝑡), a Fail, or a Subst(Φ, 𝑎1, 𝑎2) that contains a substitution 𝜙 ∈ Φ not disjoint

with the current environment Σ, then it is returned as is, propagating this result upward.

Structural rules. These rules perform a reconstruction step, trying to refine a partial annotation

into a complete annotation for the algorithmic type system.

[Ok1-R]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡)
[Fail-R]

Σ ⊢R [𝑒 | untyp] ⇒ Fail

If the annotation is already a complete annotation, then [Ok1-R] returns Ok(𝑎, 𝑡) with 𝑡 being the
type returned by the algorithmic type system for this annotation and expression. If the annotation

is the partial annotation untyp, then [Fail-R] returns Fail.
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[Const-R]

Σ ⊢R [𝑐 | ∅] ⇒ R

Σ ⊢R [𝑐 | ?] ⇒ R
[Var-R]

Σ(𝑥) = ∀®𝛼.𝑡 𝜙 = {𝛼 { fresh}𝛼∈ ®𝛼
Σ ⊢R [𝑥 | var(𝜙)] ⇒ R

Σ ⊢R [𝑥 | ?] ⇒ R

Constants get the annotation∅. The annotation generated for a variable is var(𝜙), where𝜙 renames

the types variables quantified in Σ(𝑥) in order to make them fresh (note that this substitution 𝜙 may

get composed with other substitutions later in the reconstruction process, cf. threading rule [Subst-

R]). The purpose of this renaming to fresh type variables is to avoid unwanted correlations: for

instance, the pair (𝑓 , 𝑓 ) with 𝑓 : ∀𝛼.𝛼 → 𝛼 will be typed (𝛽 → 𝛽) × (𝛾 → 𝛾) instead of

(𝛼 → 𝛼) × (𝛼 → 𝛼).

[→I1-R]

Σ ⊢R [𝜆𝑥 .𝑒 | ¯𝜆(𝛼, ?)] ⇒ R

Σ ⊢R [𝜆𝑥.𝑒 | ?] ⇒ R
𝛼 fresh

Initially, we consider the domain of a 𝜆-abstraction to be a fresh type variable 𝛼 . Note that it is

possible to extend our language with a user-annotated 𝜆-abstraction 𝜆(𝑥 : 𝑡).𝑒 . In this case, the

[→I1-R] rule can be amended to use the initial domain 𝑡 for 𝑥 .

[→I2-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Fail

Σ ⊢R [𝜆𝑥 .𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ Fail
[→I3-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢R [𝜆𝑥 .𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ Subst(Φ, ¯𝜆(𝑠, 𝑎′), ¯𝜆(𝑠, 𝑎′′))

[→I4-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) Σ ⊢R [𝜆𝑥 .𝑒 | 𝜆(𝑠, 𝑎)] ⇒ R

Σ ⊢R [𝜆𝑥.𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ R

Those three rules are mostly plumbing: if reconstructing the body of the 𝜆-abstraction yields a Fail,
it is simply propagated. If it yields a Subst(Φ, 𝑎1, 𝑎2), it is also propagated while reconstructing the

partial annotation. Lastly, if it yields a Ok(𝑎, 𝑡), then the reconstruction algorithm tries to type the

𝜆-abstraction with the algorithmic type system using the annotation 𝜆(𝑠, 𝑎) (the second premise in

rule [→I4-R] will use the rule [Ok1-R] presented above).

[→E5-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑡1)
Σ ⊢∗R [𝑒2 | 𝑎2] ⇒ Ok(𝑎2, 𝑡2) {𝑡1 ¤≤ 𝑡2 → 𝛼} ⊩ Φ

Σ ⊢R [𝑒1𝑒2 | @̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, @(𝑎1, 𝑎2), untyp)
𝛼 fresh

When reconstructing an application, if the two operands have already been reconstructed suc-

cessfully, then [→E5-R] solves the constraint 𝑡1 ¤≤ 𝑡2 → 𝛼 (𝑡1 being the type of the function,

𝑡2 of the argument, and 𝛼 a fresh type variable for the result) using tallying. It then returns

Subst(Φ, @(𝑎1, 𝑎2), untyp), meaning that, for any 𝜙 ∈ Φ, the annotation @(𝑎1𝜙, 𝑎2𝜙) can be used for

typing the application under the context Σ𝜙 . The general case (corresponding to the environment Σ
unmodified) is associated with the annotation untyp (i.e. the application cannot be typed). Note that,
if the application is already typeable under the current environment Σ, then the tallying algorithm

will return the identity substitution as a solution, in which case the general case associated with

the annotation untyp is redundant because the environment Σ is already entirely covered by Φ.
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[×E4-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) {𝑡 ¤≤ 𝛼 × 1} ⊩ Φ

Σ ⊢R [𝜋1𝑒 | 𝜋 (𝑎)] ⇒ Subst(Φ, 𝜋 (𝑎), untyp)
𝛼 fresh

[×E5-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) {𝑡 ¤≤ 1 × 𝛼} ⊩ Φ

Σ ⊢R [𝜋2𝑒 | 𝜋 (𝑎)] ⇒ Subst(Φ, 𝜋 (𝑎), untyp)
𝛼 fresh

Projections are similar to applications, though the constraint generated is simpler.

[∈4-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) {𝑠 ¤≤ ¬𝜏} ⊩ Φ

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ?, ¯𝑏2)] ⇒ Subst(Φ, ∈(𝑎, skip, ¯𝑏2), ∈(𝑎, ¯type(?), ¯𝑏2))

[∈5-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) {𝑠 ¤≤ 𝜏} ⊩ Φ

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ?)] ⇒ Subst(Φ, ∈(𝑎, ¯𝑏1, skip), ∈(𝑎, ¯𝑏1, ¯type(?)))

When reconstructing a branch of a type-case for the first time, we use tallying to determine

whether this branch could be skipped in some contexts. This is necessary to infer intersection types

for overloaded functions. For instance, consider the expression 𝜆𝑥.(𝑥∈int) ? 42 : false. When

reconstructing it, 𝑥 first gets a fresh type 𝛼 . Then, before reconstructing the first branch, the [∈4-R]

rule solves the constraint 𝛼 ≤ ¬int, which yields a substitution 𝜙 = {𝛼 { ¬int ∧ 𝛼}. It then
returns Subst({𝜙}, ∈(𝑎, skip, ¯𝑏2), ∈(𝑎, ¯type(?), ¯𝑏2)), which will have as effect to backtrack before

the introduction of 𝑥 in the environment and insert an intersection annotation composed of two

branches: (𝑖) a first branch where 𝑥 has the type int∧𝛼 and where the first branch of the type-case

is skipped (annotation ∈(𝑎, skip, ¯𝑏2)), and (𝑖𝑖) a second branch where 𝑥 has the type 𝛼 and the first

branch of the type-case is typed (annotation ∈(𝑎, ¯type(?), ¯𝑏2)).

[Let1-R]

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (?, {(𝑠𝑖 , ?)}𝑖∈𝐼 )] ⇒ R

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ?] ⇒ R
{𝑠𝑖 }𝑖∈𝐼 = decomposition(Σ, 𝑥, 𝑒2)

A let-binding initially gets the partial annotation
¯let (?, {(𝑠𝑖 , ?)}𝑖∈𝐼 ), where the {𝑠𝑖 }𝑖∈𝐼 are the

different parts of the type decomposition that will be performed on 𝑥 . This type decomposition is

computed independently, here by calling the oracle decomposition(Σ, 𝑥, 𝑒2). Several choices are
possible for this oracle, depending on how pervasive and precise we want type narrowing to be (at

the expense of performance and added complexity to the reconstructed types). It could be the trivial

oracle decomposition(Σ, 𝑥, 𝑒2) = {1}, which would result in a type system that does not perform

type narrowing. Or it could decompose the type of 𝑥 by analyzing the type-cases that involve 𝑥 in

𝑒2, similarly to what is done in [Castagna et al. 2024b, Section H.3]. For instance, if 𝑒2 contains a

type-case (𝑓 𝑥∈true) ? ... : ... and our context Σ contains a binding (𝑓 : (1 → 1) ∧ (𝛼 → false)),
then we can deduce that 𝑥 has the type ¬𝛼 in the first branch, and thus decompose the type of 𝑥

using the partition {𝛼,¬𝛼}.

[Let4-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑠)
𝑠 ∧ 𝑠′ ≃ 0 Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1,𝑈 )] ⇒ R

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1, {(𝑠′, 𝑎2)} ∪𝑈 )] ⇒ R

If one of the parts of the decomposition is disjoint with the type of 𝑒1, then this part can be removed

from the decomposition.
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[∧1-R]

Σ ⊢R [𝑒 | ∧̄({})] ⇒ Fail
[∧2-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Fail Σ ⊢R [𝑒 | ∧̄(𝐼 )] ⇒ R

Σ ⊢R [𝑒 | ∧̄({𝑎} ∪ 𝐼 )] ⇒ R

When refining an intersection annotation, the different annotations composing the intersection are

refined sequentially. If one of them yields Fail, it is removed from the intersection (rule [∧2-R]). If

the intersection becomes empty, then the reconstruction fails (rule [∧1-R]).

As we already mentionned, the full set of rules can be found in Appendix D. To reconstruct the

type of an expression 𝑒 under a context Σ, we can just derive a judgment Σ ⊢∗R [𝑒 | ?] ⇒ R. If
R = Fail, it means our reconstruction algorithm failed to find a suitable annotation tree to type 𝑒 .

If R = Ok(𝑎, 𝑡), then we know that Σ ⊢A [𝑒 | 𝑎] : 𝑡 . The result R cannot be Subst(Φ, 𝑎1, 𝑎2) if the
current environment does not have free variables (vars(Σ) = ∅).

4 Mutable data structures
The language formalized in Section 2 features non-determinism, but does not have mutable data

structures. In this section, we extend our type algebra and type system in order to support mutable

data structures like references, arrays, and dictionaries.

4.1 Opaque data types
We first focus on extending our type algebra. One possible way to do that is to add a built-in type

constructor for each primitive mutable data structure, for instance references, for which [Castagna

and Frisch 2005] propose a set-theoretic interpretation. However, their interpretation of references

does not admit a set-theoretic model when recursion occurs inside a reference, which forces them

to restrict the shape of valid types. While this is not an issue in their context where types are

monomorphic (they do not feature type variables), this may be problematic in our setting as the

tallying algorithm may build recursive types that do not meet these restrictions. Moreover, adding

tailored type constructors for each primitive data structure requires, for each of them, to extend

the type interpretation, the subtyping algorithm, and the tallying algorithm. Instead, we define

in this section a general notion of opaque data types that allows us to represent new parametric

data structures, disjoint from the other values of our language, and without worrying about their

underlying structure while still accounting for the variance of their parameters.

It is also worth noting that our focus here is solely on the typing of opaque data types; we do

not explore the semantic aspects relating to the conversion of a concrete data structure into an

abstract one, which would require the boxing and unboxing of values at the interface level. Such

an abstraction mechanism would allow for greater modularity and enable separate compilation,

but this is not the focus of this paper.

4.1.1 Opaque data types and subtyping. We extend the types syntax with constructors representing

opaque data types:

Types 𝑡 ::= . . . | #o(𝑡)

where #o ranges over a set of names.

For each opaque data type constructor #o, our subtyping and tallying algorithms [Castagna et al.

2015] are extended with the following case:∧
𝑝∈𝑃

#o(𝑡𝑝 ) ≤
∨
𝑛∈𝑁

#o(𝑠𝑛) ⇔ ∃𝑝 ∈ 𝑃 . ∃𝑛 ∈ 𝑁 . 𝑡𝑝 ≃ 𝑠𝑛
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Roughly, a conjunction of instances of an opaque data type #o is a subtype of a disjunction

of instances of #o if and only if both sides share an instance with the same parameter (modulo

semantic equivalence).

This subtyping relation is rather weak: in particular, two instances #o(𝑡1) and #o(𝑡2) are compa-

rable if and only if 𝑡1 ≃ 𝑡2. However, it is possible to refine this subtyping relation if we know that

the concrete set-theoretic interpretation of #o(.) satisfies some properties. We distinguish 5 cases

and provide a subtyping relation for each:

General case: we know nothing about the set-theoretic interpretation of #o(.). This case can be

used to represent an opaque data type with an invariant parameter, and corresponds to the

subtyping relation above.

Monotonic interpretation: when 𝑡1 ≤ 𝑡2 ⇒ #o(𝑡1) ≤ #o(𝑡2). This case can be used to represent

an opaque data type with a covariant parameter.

Monotonic interpretation and ∧-preservation: when the interpretation of #o(.) is monotonic

and satisfies #o(𝑡1 ∧ 𝑡2) ≃ #o(𝑡1) ∧ #o(𝑡2).
Monotonic interpretation and ∨-preservation: when the interpretation of #o(.) is monotonic

and satisfies #o(𝑡1 ∨ 𝑡2) ≃ #o(𝑡1) ∨ #o(𝑡2).
Monotonic interpretation and ∧-∨-preservation: when the interpretation of #o(.) is mono-

tonic and preserves ∧ and ∨. This case can be used to represent boxed values (i.e. when the

interpretation of #o(𝑡) just adds a tag to the values in the interpretation of 𝑡 ).

The subtyping relations associated with each case can be found in Appendix E. Note that, even

though we do not provide a case for anti-monotonic interpretations, it can be handled with the

monotonic case by negating the parameter. For instance, an opaque data type with a contravariant

parameter 𝛼 can be encoded as #o(¬𝛼) where #o is a monotonic opaque data type.

4.1.2 Interpretation and soundness. Instead of having a fixed set-theoretic interpretation for opaque
data types, we parametrize our interpretation of types by some black-box functions – one for each

opaque data type constructor #o – mapping the interpretation of a parameter 𝑡 to the interpretation

of the opaque data type #o(𝑡).
Then, for each of the cases above, we ensure the associated subtyping relation is sound for every

possible interpretation satisfying the properties. More precisely, for any such type interpretation

J.K, our subtyping relation must satisfy #o(𝑡1) ≤ #o(𝑡2) ⇒ J#o(𝑡1)K ⊆ J#o(𝑡1)K. Note that we do
not have the other direction in general: this is the price to pay for using a general notion of opaque

data types instead of tailored types for each primitive data structure of our language. A formal

statement of soundness and proofs for each case can be found in Appendix E.

4.2 Value restriction
Opaque data types allows us to define interfaces operating on mutable data structures, for instance:

abstract type ref ( 'a) (∗ Define an opaque type w/ an invariant param. ∗)
val ref : ' a -> ref ( 'a) (∗ Constructor ∗)
val (<-) : ref ( 'a) -> ' a -> () (∗ Setter ∗)
val (!) : ref ( 'a) -> ' a (∗ Getter ∗)

However, in order for these type signatures to be sound, our type system must implement the

value restriction used in Hindley-Milner type systems with mutable references [Wright 1995], such

as SML, OCaml and F#. Indeed, the type system defined in Section 3 with no further restriction can

derive a type for the following expression, even though its reduction gets stuck:

let𝑥 = ref 0 in (𝑥 <- false, (!𝑥) + 1)
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Indeed, the definition ref 0 can be typed ref(0 ∨ 𝛼), which is then generalized into the type

∀𝛼.ref(0∨𝛼). Then, the typing derivation of the left-hand side of the pair can choose to instantiate

𝛼 with false, while the right-hand side can choose to instantiate 𝛼 with 0.
The value restriction avoids this issue by preventing let-bindings to generalize arbitrary expres-

sions: only values can be generalized. As values cannot be reduced any further, evaluating them

cannot cause any side effects (such as creating or writing to a reference). Therefore, their type can

be safely generalized. The value restriction can easily be implemented by amending the typing

rules for let-bindings in the declarative and algorithmic type systems:

[Let]

Σ ⊢ 𝑒1 : 𝑠 (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡

Σ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖 , ¬value(𝑒1) ⇒ ®𝛼 = ∅

®𝛼#vars(Σ), ∀𝑖 ∈ 𝐼 . ®𝛼#vars(𝑠𝑖 )

[Let-A]

Σ ⊢A [𝑒1 | 𝑎] : 𝑠 ®𝛼 =

{
vars(𝑠) \ (vars(Σ) ∪⋃

𝑖∈𝐼 vars(𝑠𝑖 )) if value(𝑒1)
∅ otherwise

(∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢A [𝑒2 | 𝑎𝑖 ] : 𝑡𝑖

Σ ⊢A [let𝑥 = 𝑒1 in 𝑒2 | let (𝑎, {(𝑠𝑖 , 𝑎𝑖 )}𝑖∈𝐼 )] :

∨
𝑖∈𝐼 𝑡𝑖

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖

The additional side-conditions (in red) state that, if 𝑒1 is not a value, then the set of generalized

type variables ®𝛼 must be empty.

5 MLsem: a prototype implementation
The type system, reconstruction algorithm and optimizations described in this paper have been

implemented in a prototype, MLsem (sem stands for semantic subtyping), of about 5000 lines of
OCaml (including parsing). The purpose of this prototype implementation is to demonstrate that

our type system is general enough to type both functional and imperative features.

5.1 Program transformations and encodings
MLsem implements the type system of Section 3 as well as several extensions, in particular user

type annotations, pattern matching, and recursive functions (which can be encoded using a fixpoint

combinator). More importantly, MLsem extends our language with imperative features such as

mutable variables, sequences, loops, and more advanced imperative control flow (in particular

break and return). These imperative extensions are encoded in the functional core calculus of

Section 2, as shown in Figure 4.

Source language

(adv. control flow)

Minimal

imperative lang.

Functional core

language (Section 2)

Elimination of

pattern matching

Elimination of

breaks/returns

Encoding of mutability

using references

Encoding of sequences

using let-bindings

Transformations to make

data-flow more explicit

Fig. 4. Program transformations in MLsem

Source language. The source language has all the features described above: mutable variables,

assignments, sequences, loops, return and break statements, and pattern matching. Pattern matching

is eliminated through a program transformation as described in [Laurent 2024], by encoding it with

type-cases and let-bindings. Another local program transformation eliminates advanced control

flow instructions, in particular some return and break statements. Control flow statements that
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cannot be easily eliminated can be replaced by an expression of type 0, making the code directly

after in the current block unreachable.

Minimal imperative language. This intermediate language still has mutable variables, assignments,

sequences and loops, which allows running some local program transformations to make the data-

flow more explicit. The objective is to minimize the use of mutable variables in order to enable the

type system to perform type narrowing, which cannot occur on mutable variables as a reference

type cannot be decomposed in a useful way (ref(’a|’b) cannot be decomposed into ref(’a),

ref(’b)).

Functional core language. This corresponds to the language defined in Section 2, with only

immutable let-bindings, the usual constructors and destructors, and type-cases. Sequences are en-

coded with let-bindings, mutable variables are encoded as references, and the associated read/write

operations are encoded as applications. At this point, loops can be replaced by simple conditionals

(which are encoded as type-cases): since our typing of mutable variables is flow-insensitive (their

type is invariant), typing the body of a loop once or multiple times is the same.

(∗ 1. Source language ∗)
let neg_and_pos x =
let mut x = x in
if x is Nil do return x end ;

if x < 0 do x := -x end ;
x := (-x,x) ;

return x

(∗ 2. Minimal imperative language ∗)
let neg_and_pos x =
let mut x = x in
if x is Nil then x
else begin
if x < 0 do x := -x end ;
x := (-x,x) ;

x

end

(∗ 3. Optimized imp. lang. ∗)
let neg_and_pos x =
let mut x ' = x in
if x is Nil then x
else begin
if x < 0 do x ' := -x end ;
let x ' ' = (-x ' ,x ') in
x ' '

end

(∗ 4. Functional core language ∗)
let neg_and_pos x =
let x ' = ref x in
if x is Nil then x
else begin
let _ = if x < 0 then x ' <- -x else () in
let x ' ' = (0 - !x ' , !x ') in
x ' '

end

Fig. 5. Example of code transformation. Type inferred: (int -> (int,int)) & (Nil -> Nil)

Figure 5 shows an example of transformation from the source language to the functional core

language of Section 2. The syntax used is the one of MLsem. The first transformation eliminates

return x statements. While the final return statement can directly be removed as it is the last

operation, the one in the if must be eliminated by moving the code after the if into a else. This

makes explicit the fact that the code after the if is only executed when x is Nil is false.

The second transformation tries to make the data-flow more explicit by introducing shad-

owing in place of assignments when possible. Mutable variable declarations and assignments

are preceded by a similar immutable variable declaration (for instance, x := e ; ... becomes

let x’ = e in x := x’ ; ... ) that stays valid as long as the mutable variable is not reassigned.

Reads that happen in this area of validity will use the immutable version of the variable. In our
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example, this makes both the test if x is Nil and the reads of x in the else branch to use the

same immutable variable, allowing the type system to perform type narrowing.

Finally, the third transformation encodes the remaining mutable operations into our core lan-

guage: mutable cell creations become applications of ref, reads become applications of !, and writes

become applications of <- (cf. Section 4.2).

5.2 Evaluation

let loop_invalid x =
let mut x = x in while true do
x := x + 1 ; x := false

end ; x
(∗ Untypeable (+ only defined on int) ∗)
let loop_valid x =
let mut x = x in while true do
if x is ~int do return x end ;
x := x + 1 ; x := false

end ; x
(∗ ( 'a\int -> ' a\int) & ( 'a -> false | 'a) ∗)

val rand_any : () -> any

let loop_type_narrowing y =
let mut x in
let mut y = y in
while is_int
(x := rand_any () ; x) do
y := y + x

end ;
return (x,y)

(∗ int -> (any, int) ∗)

abstract type dict ( 'k, ' v)

abstract type array ( 'a)
val dict : () -> dict ( 'a, ' b)

val array : () -> array ( 'a)

val ([]<-) : ((dict ( 'a, ' b), ' a) -> ' b -> ())

& ((array ( 'b), int) -> ' b -> ())

val ([]) : ((dict ( 'a, ' b), ' a) -> ' b)

& ((array ( 'b), int) -> ' b)

let nested x y =
let d = dict () in
d[x]<- (array ()) ;

(d[x])[0]<- y ;

(d[x])[0]

(∗ any -> ' a -> ' a ∗)
let swap i j x =

let tmp = x[i] in
x[i]<- x[j] ; x[j]<- tmp

(∗ type too long, see below ∗)

Fig. 6. Imperative and overloaded code examples (types inferred are written as comments)

We tested MLsem on a corpus of 150 small functions (amounting to about 550 lines of code),

focusing on the evaluation of type narrowing, on the typing and application of overloaded functions,

on operations involving opaque data types, and on type inference. Some examples from this

corpus can be found in Figure 6 and are discussed below. These examples can be tested on our

prototypeavailable online , as well as many others (with recursive functions, pattern matching,

etc.).

Type narrowing. Our test corpus contains many functions involving type narrowing, and in

particular the 14 examples from [Tobin-Hochstadt and Felleisen 2010] (available in Appendix F). For

each, two variants have been tested, one where the function parameters are explicitly annotated

with their type, and one where they are not. Both variants successfully type-check, and for the

unannotated ones, our prototype infers some intersections of arrows that capture the overloaded

behaviors of the functions.

Type narrowing also plays a role in the typing of loop_valid and loop_type_narrowing (Figure 6).

In both cases, it is used to deduce that x is an integer in the body of the loop, which is required to

type the application of + (of type int -> int -> int).

https://e-sh4rk.github.io/MLsem/
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Likewise, type narrowing is used to type the example filter_imp from the introduction: when

typing the body of the conditional if f e do push res e end, our type system is able to deduce

that e has type ’a \’b, allowing to derive for filter_imp the following type:

(’a -> bool)&(’b -> false) -> array(’a|’b) -> array(’a\’b|’c)

Type inference and overloaded behaviors. When the type of a function parameter is not explicitly

annotated, the type reconstruction algorithm infers it. For instance, the function nested (Figure 6)

– which stores its second argument in an array, itself stored in a dictionary, and then retrieves and

returns this argument – gets the type any -> ’a -> ’a. Note the use of the overloaded operators

([]) and ([]<-) that can apply on both arrays and dictionaries.

Unfortunately, the types inferred may sometimes be unnecessarily complicated, which is a

common issue when using set-theoretic types. Without type annotations, the function swap gets

the following type:

(’a&int -> (’b&int -> array(’c) -> ())&(’b -> dict(’a&int | ’b | ’d, ’c) -> ())) &

(’a -> ’b -> dict(’a | ’b | ’d, ’c) -> ())

This type – though correct and precise – could be simplified into this one, just as precise:

(’a -> ’a -> dict(’a,’b) -> ()) & (int -> int -> array(’b) -> ())

Note that, if this simpler type signature is provided for swap, then our prototype is able to check

that it is correct. Such complexity in the inferred types is mostly observed for functions with

overloaded behaviors (here, because of the calls to the overloaded functions [] and []<-) and whose

arguments involve several invariant type variables, since invariant type variables cannot easily be

eliminated.

Even though the inferred type for the swap function is overly complicated, we believe type

inference can still be useful for inferring the type of anonymous functions, which are usually small

and are only applied locally (meaning that their type will not be visible to the programmer). It can

also be used to help the programmer annotate top-level functions by providing type suggestions

in an interactive way, even though it may sometimes fail to find a suitable type. Also, we may

imagine that when a function is not annotated by the user, the reconstruction algorithm runs in a

particular inference mode (as opposed to checking mode) where overloaded functions (such as []

and []<-) are approximated with a non-overloaded type, resulting in a less precise but simpler

inferred type. Type system implementations are free to rely on such heuristics or not: this paper

provides a general and flexible approach, but typing dynamic languages remains a difficult problem

that may require compromises.

Time performance. One of the difficulties when dealing with set-theoretic types is to maintain

good and homogeneous performance. MLsem has made significant progress in this matter. Type-

checking the annotated version of the 14 examples from [Tobin-Hochstadt and Felleisen 2010] (cf.

Appendix F) takes 30ms
2
. Without annotations, the type of these functions is reconstructed in 75ms.

Each small annotated function from our corpus (1-10 lines each) type-checks in 1-20ms, including

recursive functions. Unannotated (or partially annotated) functions can be slower, in particular

recursive functions: for instance, the type of a unannotated map function (which is recursive and

takes two parameters, one of which is a function) is reconstructed in 22ms. Some more complex

unannotated recursive functions may not finish type-checking even after a minute.

In addition to our corpus of small functions, we evaluated MLsem on a bigger function, adapted

from the bal(ance) function used in the module Map of the OCaml standard library [OCaml 2023].

The code for this function is available in Appendix F. This function has 6 different pattern-matching

constructs and 5 type-cases, making it a good candidate for evaluating the performance of our

2
These tests have been performed on a laptop with an Intel i5-12500H CPU.
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approach to type narrowing. Our prototype can type-check it in 110ms. For comparison, using the

prototype of [Castagna et al. 2024b], this function type-checks in about 2200ms.

We also evaluated our approach on the filtermap function presented in [Schimpf et al. 2023] (cf.

Appendix F). This recursive function is type-checked against an intersection of arrows, capturing

its overloaded behavior, and requires type narrowing to be type-checked. [Schimpf et al. 2023]

state that they are able to type-check this function, but that it takes over one minute. With our

approach, we are able to type-check it in 10ms with a similar hardware. While the performance

improvements observed through these examples are encouraging, our implementation is still in the

prototype stage and has yet to be tested on a large codebase.

6 Related Work
Comparisonwith approaches using set-theoretic types. This paper reuse several ideas from [Castagna

et al. 2024b], in particular the use of a union elimination rule to implement type narrowing, and

the definition of an algorithmic type system that relies on an annotation tree. Though, they are

several major differences between the two approaches. First, their type system only generalizes

type variables at top-level, hence the need to define a notion of programs in addition to the notion

of expressions. Programs have generalizing let-bindings, and expressions do not have let-bindings

(though they formalize an extension adding non-generalizing let-bindings to expressions). Their

formalism also does not rely on type schemes, but on two disjoint set of type variables: one for

polymorphic type variables, and one for monomorphic type variables. Also, their type system can

derive types containing polymorphic type variables, preventing the implementation of the value

restriction, whereas in our system type schemes from the environment are immediately instantiated

by the [Var] rule.

Another difference is the presence of a general union elimination rule, which can be used on any

expression (not only on let-bindings). A consequence is that their type system is able to narrow

the type of any sub-expression and not only variables: for instance, their type system is able to

type the expression (𝑓 42∈int) ? (𝑓 42) + 1 : 0 with 𝑓 : 1 → 1. However, this is only sound on

a pure 𝜆-calculus. This more general union elimination rule also makes the implementation of

the type system more complex. Indeed, their algorithmic type system works on expressions of a

particular form that they callmaximal sharing canonical (MSC) form, and that factorizes and isolates

every distinct sub-expression in a separate definition (a binding). This also adds bureaucracy to the

reconstruction algorithm, as these bindings must be typed only if they are actually used later in the

current branch. Our algorithm for reconstructing annotation trees is simpler and generates fewer

constraints: while the annotation reconstruction algorithm of [Castagna et al. 2024b] invalidates

and recomputes type substitutions of each definition when the algorithm backtracks, we don’t have

to do so in our case.

Another approach to type inference is used in [Petrucciani 2019; Schimpf et al. 2023]. Instead of

a backtracking algorithm that solves local constraints as it explores the expression, they generate

for the whole expression a large set of constraints that is then normalized and solved using tallying.

While this approach is very efficient for Hindley-Milner systems, where constraints are solved

using unification and have at most one principal solution, solving semantic subtyping constraints

can be very expensive when the number of type variables involved increases, and the number

of solutions can also grow exponentially. This may explain why [Schimpf et al. 2023] sometimes

show major performance issues even for annotated functions (cf. filtermap example mentioned in

Section 5.2): large sets of constraints can be hard to simplify and solve. Instead, our approach only

requires solving small local constraints, and solutions can be immediately simplified to eliminate

redundant substitutions and type variables.
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Lastly, our approach to type narrowing differs from [Castagna et al. 2024a; Schimpf et al. 2023].

While our type system works on a language featuring type-cases that can test arbitrary expressions,

and presents a general solution for type narrowing that relies on (a restricted version of) the union

elimination rule, the approaches mentioned above implement type narrowing in a more specific

context: a language with pattern-matching and where patterns can be guarded by expressions of a

specific form. They use specific deduction rules to strengthen the type of the variables occurring in

a pattern just before typing the associated branch. Although less general, their approach may be

more efficient in their setting as it does not require typing the body of let-bindings multiple times.

Comparison with Hindley-Milner and its extensions. Our type discipline combines several ideas

from the Hindley-Milner family of type systems. Hindley-Milner type systems have first-order

prenex polymorphism, principal types, and type inference is decidable: [Damas and Milner 1982]

describes a simple method, referred as algorithm W. Our approach for type inference takes

inspiration from algorithmW, but instead of using unification to solve syntactic constraints, we

use tallying to solve semantic subtyping constraints. This results in a branching type inference

algorithm, because unlike unification, tallying may yield multiple solutions (which is expected, as

one of our purpose is to type overloaded functions). Another key idea we reuse from Hindley-Milner

systems is the value restriction [Wright 1995], necessary to preserve soundness in the presence of

parametric mutable data structures.

Inference for ML systems with subtyping, unions, and intersections has been studied in MLsub

[Dolan andMycroft 2017] and extended with richer types and a limited form of negation in MLstruct

[Parreaux and Chau 2022]. They define a lattice of types and an algebraic subtyping relation with

some restrictions that ensure principality, but forbid (or approximate) intersections of arrow types,

making it impossible to use intersections to achieve ad-hoc polymorphism. We justify our choice

of set-theoretic types, with no principality and a complex inference, by our aim to type dynamic

languages, such as JavaScript or Python, where overloading plays an important role. We favor the

expressivity necessary to type many idioms of these languages, and rely on user-defined annotations

when necessary to compensate for the incompleteness of the type inference.

In a more recent work, [Parreaux et al. 2024] define 𝐹{≤} , a 𝜆-calculus with first-class polymor-

phism. It features intersections and unions, but the use of those is restricted: intersections can

only appear in negative positions, and unions can only appear in positive positions. They define a

type inference for this system, SuperF, inspired by polar type systems such as [Jim 2000]. Their

type system is more expressive than MLsub and MLstruct, but their type inference cannot infer

principal types in general. This approach takes a different direction from ours: while we choose to

restrict polymorphism to be prenex, they use unrestricted first-class polymorphism but restrict

the use of intersections and unions in negative and positive positions respectively. In our context

of typing dynamic languages, intersections in positive positions are used to capture the behavior

of overloaded functions (ad-hoc polymorphism), and unions in negative positions can be used to

represent a structural form of algebraic data types.

Comparison with type-checkers for dynamic languages. Languages such as JavaScript or Python

already have extensions and/or tools providing static type-checking. For instance, TypeScript is a

statically-typed extension of JavaScript (adding syntax for types and providing a type-checker),

and MyPy is a tool for type-checking Python (reusing the type syntax already present in the

specification of Python). However, these approaches lack a formal foundation, and usually prioritize

flexibility for the programmer over type safety. Still, they can detect many type inconsistencies

(though not all of them), and provide type information that is useful for the documentation and the

toolchain, which explains their success and the increasing interest programmers have for static

type-checking of dynamic languages.

https://www.typescriptlang.org/
https://mypy.readthedocs.io/en/stable/
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In terms of features, both approaches support parametric polymorphism (sometimes called

generics). Python lacks intersection types, both for functional types and objects. For objects, it can

be partly mitigated using protocols (interfaces, but typed structurally instead of nominally), though

it may cost verbosity (one may have to define both an abstract class and the corresponding protocol).

TypeScript does support intersection types, but not for function types. Overloaded functions at

top-level can be given several type signatures, but these overloaded signatures are not first-class

types, and thus it cannot be used to type, for example, our filter function from the introduction.

Neither Python nor TypeScript have negation types, nor type narrowing (except for tests directly

on variables such as if (typeof x === "number")).

When not annotated, MyPy tries to infer the type of the parameters of functions. However,

their type inference is not based on a well-etablished constraint solving algorithm such as tallying,

and may be unpredictable due to the use of heuristics. TypeScript does not provide type infer-

ence for the parameter of functions, but performs contextual typing: for instance, when writing

window.onmousedown = function (ev) { ... }, it can deduce the type of ev because it knows

what window.onmousedown expects.

Another project that adds static typing to an initially untyped dynamic language is Luau. Luau

uses a type system featuring semantic subtyping to statically type Lua code. In addition to the

safety guarantees it brings, the static type information is used by their interpreter to perform

optimizations. Their implementation of semantic subtyping, which they call pragmatic semantic
subtyping, is inspired by set-theoretic types, though it differs from the set-theoretic interpretation

on some aspects, notably for functions [Jeffrey 2022]. As with set-theoretic types, they support

singleton types, unions, and intersections. However, negation is only supported on test types (those

that can appear in type-cases), and not on structural types (like arrow types). Overall, they have

opted for a pragmatic approach that restricts some features of set-theoretic types for the sake of

simplicity and performance. However, the absence of arbitrary negation types is a limitation for

implementing our general approach for type narrowing and type inference using tallying.

7 Conclusion
This work presents a type system that aims at typing dynamic languages mixing both functional and

imperative features (e.g. Python, R, or JavaScript). It reuses ideas from previous work, in particular

the use of union-elimination to implement type narrowing [Castagna et al. 2024b], and the use of

tallying to solve subtyping constraints for type inference [Castagna et al. 2015]. Unlike [Castagna

et al. 2024b], our approach is compatible with non-determinism and mutability, and does not require

turning expressions in an special MSC-form. We also extended set-theoretic types with a notion

opaque data types that may be used to represent various data structures such as references, arrays or
dictionaries. The type system and reconstruction algorithm presented in this paper are general and

are not meant to be used as is to type a real-world language, but rather to serve as a basis that can

be adapted to a more specific setting and extended with language-specific features. To demonstrate

the feasibility, we implemented a functional and imperative language with type-cases, MLsem, and

showed how it can be typed by our system using simple encodings and program transformations.

We hope that our work could form the basis of new static type systems for dynamic languages,

providing more expressive types and typing rules that are both safer and more predictable.

7.1 Future work
Gradual typing. Though our type discipline makes it possible to type functions manipulating

heterogeneous data with precision, it cannot type all the features dynamic languages usually have.

For instance, functions involving reflective operations like eval cannot be typed. Type-checkers for

dynamic languages usually mitigate this issue through the use of gradual typing, allowing some

https://luau-lang.org/
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functions to remain untyped while still being able to type other parts of the codebase. Gradual

typing offers interoperability with untyped codebases: for instance, TypeScript programs can freely

use untyped JavaScript libraries. Gradual typing comes in many flavors: some implementations

may prioritize type precision, others may prioritize the preservation of the semantics (no added

cast at runtime), or the compatibility with unmigrated code. In the context of set-theoretic types,

gradual typing has first been studied in [Castagna et al. 2019]. They propose a sound approach to

gradual typing where casts are added to the initial program. In their efforts to type Elixir using

set-theoretic types, [Castagna et al. 2024a] present a type system with some tailored sound gradual

typing. They do not add new casts to the program, but manage to mitigate the propagation of

gradual types by reusing casts that are already present. They do that by distinguishing two kinds

of functions: those that check the type of their arguments at runtime (strong arrows) and those that

do not (weak arrows). While we have no doubt about the feasibility of adding gradual typing to our

framework, the way to do it may depend on the needs of the target language.

Typing of objects and interfaces. Many dynamic languages are object-oriented (e.g. Python and

JavaScript). Usually, the semantics of objects in dynamic languages follow the duck-typing rule: if

an object implements all the features of a duck, then it can be considered as a duck, regardless of

how it has been created. In terms of static typing, it naturally translates to structural subtyping,
where an object 𝑜1 is considered to be a subtype of an object 𝑜2 if and only if all the attributes

and methods 𝑜2 exposes are also in 𝑜1 with similar or smaller types signatures. This is opposed to

nominal subtyping, where an object gets its type from the constructor used to create it, and where

subtyping may capture the inheritance relations between the object definitions. Structural and

nominal subtyping each have advantages, and some languages feature both (e.g., ABC and Protocols
in Python). Nominal subtyping keeps types simple and gives more control to the programmer

about the subtyping relation. Structural subtyping is more flexible, but types (and subtyping) can

quickly become more complex as objects get composed together. Finding an encoding for objects

and interfaces that remains simple while capturing the idioms of dynamic languages is a challenge

that will need to be addressed in future work.

Type inference. This paper formalizes a reconstruction algorithm that is able to infer the domain

of 𝜆-abstractions. In the case of functions with an overloaded behavior, the type inferred may be

composed of several intersections of arrows that capture the different behaviors. However, as seen

in Section 5.2, the types inferred may sometimes be overly complicated. Some research about the

simplification of polymorphic types could be beneficial. Moreover, as overloaded functions are

composed together, they may exhibit more and more overloaded behaviors. We do not want types

to capture all these behaviors, as it would result in increasingly complex types. Instead, intersection

of arrows should be used with parsimony. To achieve such a compromise between precision and

simplicity, one may rely on the use of LLMs as an oracle to simplify types or to suggest, for a given

function, which domains are worth exploring separately and which ones can be assimilated. In

addition, type inference should be thought as an interactive tool integrated into the IDE.

Language-specific features and optimizations. This paper presents a general framework, in which

type narrowing is implemented through union elimination, and mutable data structures are modeled

with parametrized opaque data types. Though, specific aspects and features of the target language

we want to type should be taken into account in order to tailor a more efficient and optimized

type system. This paper defines a minimal language that supports basic functional and imperative

features, but the encoding of a real programming language with more advanced features (such as a

built-in mechanism for dynamic dispatch, or R-like laziness) into this minimal language may not

be trivial.
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Data availability statement
All the auxiliary definitions and proofs that we omitted from the main text are available in the

appendices of the extended version. An online version of the prototype is available at https://e-

sh4rk.github.io/MLsem/.
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A Semantic Subtyping
This appendix summarizes the interpretation of set-theoretic types formalized in [Gesbert et al.

2015] and how it can be used to define semantic subtyping.

A.1 Type interpretation
In order to define subtyping over these types, the idea is to interpret each ground type (i.e., a

type that does not contain type variables) as a set of values of our language. Then, subtyping can

be defined as set containment over the interpretation of types. Intuitively, each ground type is

associated to the set of values having this type: for instance, the base type true is interpreted as

the singleton containing the constant true, while the type bool = true ∨ false is interpreted as

the set {true, false}.
However, this idea becomes subtler when dealing with arrow types. Although an arrow type

intuitively corresponds to a function (i.e., a 𝜆-abstraction), interpreting an arrow type as a set of

𝜆-abstractions is problematic as it yields a circular reasoning: determining if a 𝜆-abstraction is in

the interpretation of a type requires to define a type system, which in turns needs the subtyping

relation that we are trying to build. In order to break this circularity, the interpretation of types is

not defined over values of our language but over a domain D defined below. Note that this does

not necessarily invalidate the “types as set of values” intuition, as it is discussed in Castagna and

Frisch [2005, Section 2.7].

In addition, we need to define an interpretation for all types, and not only ground ones (the

interpretation domain D should account for type variables). A simple model was proposed by [Ges-

bert et al. 2015]. We succinctly present it in this section. The reader may refer to [Castagna 2024,

Section 3.3] for more details.

Definition A.1 (Interpretation domain [Gesbert et al. 2015]). The interpretation domain D is the

set of finite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐𝐿 | (𝑑, 𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿

𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants, 𝐿 ranges over finite sets of type variables, and where Ω
is such that Ω ∉ D.

The elements of D correspond, intuitively, to (denotations of) the results of the evaluation of

expressions, labeled by finite sets of type variables. In particular, in a higher-order language, the

results of computations can be functions which, in this model, are represented by sets of finite

relations of the form {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿 , where Ω (which is not in D) can appear in second

components to signify that the function fails (i.e., evaluation is stuck) on the corresponding input.

This is implemented by using in the second projection the meta-variable 𝜕 which ranges over

DΩ = D∪{Ω} (we reserve 𝑑 to range overD, thus excluding Ω). This constant Ω is used to ensure

that 1 → 1 is not a supertype of all function types: if we used 𝑑 instead of 𝜕, then every well-typed

function could be subsumed to 1 → 1 and, therefore, every application could be given the type 1,
independently of its argument as long as this argument is typeable (see Section 4.2 of [Frisch et al.

2008] for details). The restriction to finite relations corresponds to the intuition that the denotational
semantics of a function is given by the set of its finite approximations, where finiteness is a restriction

necessary (for cardinality reasons) to give the semantics to higher-order functions. Finally, the sets of

type variables that label the elements of the domain are used to interpret type variables: we interpret

a type variable 𝛼 by the set of all elements that are labeled by 𝛼 , that is J𝛼K = {𝑑 | 𝛼 ∈ tags(𝑑)}
(where we define tags(𝑐𝐿) = tags((𝑑, 𝑑 ′)𝐿) = tags({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿) = 𝐿).
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We define the interpretation J𝑡K of a type 𝑡 so that it satisfies the following equalities, where Pfin
denotes the restriction of the powerset to finite subsets and B denotes the function that assigns to

each base type the set of constants of that type, so that for every constant 𝑐 we have 𝑐 ∈ B(b𝑐 ) (we
use b𝑐 to denote the base type of the constant 𝑐):

J0K = ∅ J𝛼K = {𝑑 | 𝛼 ∈ tags(𝑑)} J𝑡1 ∨ 𝑡2K = J𝑡1K ∪ J𝑡2K
J𝑏K = B(𝑏) J¬𝑡K = D \ J𝑡K J𝑡1 × 𝑡2K = J𝑡1K × J𝑡2K

J𝑡1→𝑡2K = {𝑅 ∈ Pfin (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅. 𝑑 ∈ J𝑡1K =⇒ 𝜕 ∈ J𝑡2K}

Note that, even though we included 1 and the intersection ∧ in the syntax of our types (Defini-

tion 2.1), those two can be defined from the other constructors: 1 = ¬0 and 𝑡1∧𝑡2 = ¬(¬𝑡1∨¬𝑡2) (De
Morgan’s law). It is easy to see that, with these definitions, we have J1K = D and J𝑡1∧𝑡2K = J𝑡1K∩J𝑡2K.
Thus, it is not necessary to define an interpretation for them.

We cannot take the equations above directly as an inductive definition of J·K because types

are not defined inductively but coinductively. Notice however that the contractivity condition

of Definition 2.1 ensures that the binary relation ▷ ⊆ T×T defined by 𝑡1 ∨ 𝑡2 ▷ 𝑡𝑖 , 𝑡1 ∧ 𝑡2 ▷ 𝑡𝑖 ,

¬𝑡 ▷ 𝑡 is Noetherian. This gives an induction principle
3
on T that we use combined with structural

induction on D to give the following definition, which validates the equalities above.

Definition A.2 (Set-theoretic interpretation of types). We define a binary predicate (𝑑 : 𝑡) (“the
element 𝑑 belongs to the type 𝑡”), where 𝑑 ∈ D and 𝑡 ∈ T , by induction on the pair (𝑑, 𝑡) ordered
lexicographically. The predicate is defined as follows:

(𝑐 : 𝑏) = 𝑐 ∈ B(𝑏)
(𝑑 : 𝛼) = 𝛼 ∈ tags(𝑑)

((𝑑1, 𝑑2) : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) and (𝑑2 : 𝑡2)
({(𝑑1, 𝜕1), ..., (𝑑𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) or (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = not (𝑑 : 𝑡)
(𝜕 : 𝑡) = false otherwise

We define the set-theoretic interpretation J.K : T → P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.

A.2 Semantic subtyping
Now that we have a set-theoretic interpretation of types, we can define the subtyping preorder and

its associated equivalence relation as follows.

Definition A.3 (Subtyping relation). We define the subtyping relation ≤ and the subtyping equiva-
lence relation ≃ as 𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K and 𝑡1 ≃ 𝑡2 ⇐⇒def (𝑡1 ≤ 𝑡2) and (𝑡2 ≤ 𝑡1) .

This subtyping relation is decidable and is sometimes referred to as semantic subtyping, as it is
not defined on the syntax of the type but on its interpretation.

3
In a nutshell, we can do proofs and give definitions by induction on the structure of unions and negations—and, thus,

intersections—but arrows, products, and base types are the base cases for the induction.
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With this set-theoretic definition of subtyping, usual properties of sets are inherited by subtyping,

for instance:

𝑡1 ∨ 𝑡2 ≃ 𝑡2 ∨ 𝑡1 𝑡1 ∧ 𝑡2 ≃ 𝑡2 ∧ 𝑡1 (commutativity)

𝑡 ∨ 𝑡 ≃ 𝑡 𝑡 ∧ 𝑡 ≃ 𝑡 (idempotence)

¬(¬𝑡) ≃ 𝑡 (double complement)

𝑡 ∨ (𝑠1 ∧ 𝑠2) ≃ (𝑡 ∨ 𝑠1) ∧ (𝑡 ∨ 𝑠2) 𝑡 ∧ (𝑠1 ∨ 𝑠2) ≃ (𝑡 ∧ 𝑠1) ∨ (𝑡 ∧ 𝑠2) (distributivity)

For any two type substitutions 𝜙1 and 𝜙2, we write 𝜙1 ≃ 𝜙2 the pointwise subtyping equivalence

of 𝜙1 and 𝜙2. An important property of the interpretation above is that subtyping is preserved by

type substitutions:

∀𝑡1, 𝑡2, 𝜙 . 𝑡1 ≤ 𝑡2 ⇒ 𝑡1𝜙 ≤ 𝑡2𝜙
However, a naive definition of vars(𝑡) is not preserved by subtyping equivalence: for instance,

we have 1 ≃ 𝛼 ∨ ¬𝛼 , while a purely syntactic definition of vars(𝑡) would yield vars(1) = ∅ and

vars(𝛼 ∨ ¬𝛼) = {𝛼}. In order to avoid this, we define vars(𝑡) as being the set of meaningful type
variables in 𝑡 . This notion has been introduced by Castagna et al. [2016], where it was noted as

mvar(𝑡), and is defined below.

Definition A.4 (Type variables). The set of type variables of a type 𝑡 , noted vars(𝑡), is the following
set of type variables:

vars(𝑡) =
def {𝛼 ∈ V | 𝑡{𝛼 { 0} ; 𝑡}

With this definition, the set of variables of a type is preserved by subtyping equivalence:

∀𝑡1, 𝑡2. 𝑡1 ≃ 𝑡2 ⇒ vars(𝑡1) = vars(𝑡2).
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B Proof of Type Safety

[Var]

Σ(𝑥) = ∀®𝛼.𝑡
Σ ⊢ 𝑥 : 𝑡𝜙

dom(𝜙) ⊆ ®𝛼 [Const]

Σ ⊢ 𝑐 : b𝑐
[Choose]

Σ ⊢ 𝑒1 : 𝑡 Σ ⊢ 𝑒2 : 𝑡

Σ ⊢ 𝑒1 ⊕ 𝑒2 : 𝑡

[Let]

Σ ⊢ 𝑒1 : 𝑠 (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡

Σ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖

®𝛼#vars(Σ), ∀𝑖 ∈ 𝐼 . ®𝛼#vars(𝑠𝑖 )

[→I]

Σ, 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡

Σ ⊢ 𝜆𝑥.𝑒 : 𝑠 → 𝑡
[→E]

Σ ⊢ 𝑒1 : 𝑡1 → 𝑡2 Σ ⊢ 𝑒2 : 𝑡1

Σ ⊢ 𝑒1𝑒2 : 𝑡2

[×I]
Σ ⊢ 𝑒1 : 𝑡1 Σ ⊢ 𝑒2 : 𝑡2

Σ ⊢ (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1]

Σ ⊢ 𝑒 : 𝑡1 × 𝑡2
Σ ⊢ 𝜋1𝑒 : 𝑡1

[×E2]

Σ ⊢ 𝑒 : 𝑡1 × 𝑡2
Σ ⊢ 𝜋2𝑒 : 𝑡2

[∈]
Σ ⊢ 𝑒 : 𝑠 𝑠 ∧ 𝜏 ; 0 ⇒ Σ ⊢ 𝑒1 : 𝑡 𝑠 \ 𝜏 ; 0 ⇒ Σ ⊢ 𝑒2 : 𝑡

Σ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡

[∧]
Σ ⊢ 𝑒 : 𝑡1 Σ ⊢ 𝑒 : 𝑡2

Σ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2
[≤]

Σ ⊢ 𝑒 : 𝑡

Σ ⊢ 𝑒 : 𝑡 ′
𝑡 ≤ 𝑡 ′

Fig. 7. Declarative type system

In this section, we prove the following type safety theorem (Theorem B.19).

Theorem (Type safety). For every expression 𝑒 and test type 𝜏 , if ∅ ⊢ 𝑒 : 𝜏 , then for any 𝑒′ such
that 𝑒 {∗ 𝑒′, we have either 𝑒′ {∗ 𝑣 for some 𝑣 ∈ 𝜏 or 𝑒′ {∞.

B.1 Overview
Type safety is usually decomposed into two lemmas: type preservation (i.e., typeability is preserved

by reduction) and progress (i.e., any well-typed expression is either a value or can be reduced).

Though, the usual type preservation does not hold for our type system. Consider for instance the

following expression:

let𝑦 = 𝜆𝑥.𝑥 in (𝑦 42, 𝑦)
By performing a specific type decomposition, the type 𝑡 = 42 × ((42 → 42) ∧ ¬(42 → 43)) can

be derived for this expression:

[Let]

𝐴

∅ ⊢ 𝜆𝑥.𝑥 : 42 → 42

𝐵

𝑦 : (42 → 42) ∧ (42 → 43) ⊢ (𝑦 42, 𝑦) : 𝑡

𝐶

𝑦 : (42 → 42) \ (42 → 43) ⊢ (𝑦 42, 𝑦) : 𝑡

∅ ⊢ let 𝑦 =𝜆𝑥.𝑥 in (𝑦 42, 𝑦) : 𝑡

The subderivations 𝐴 and 𝐶 are straightforward, and the subderivation 𝐵 is as follows (note that

(42 → 42) ∧ (42 → 43) ≃ 42 → 0, and that for any type 𝑠 , 0 × 𝑠 ≃ 0):

[≤]
[×I]

[→E]

[Var]

𝑦 : 42 → 0 ⊢ 𝑦 : 42 → 0
[Const]

𝑦 : 42 → 0 ⊢ 42 : 42

𝑦 : 42 → 0 ⊢ 𝑦 42 : 0
[Var]

𝑦 : 42 → 0 ⊢ 𝑦 : 42 → 0

𝑦 : 42 → 0 ⊢ (𝑦 42, 𝑦) : 0

𝑦 : 42 → 0 ⊢ (𝑦 42, 𝑦) : 𝑡
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What happens here is that, after decomposing the type of 𝑦 into the two types (42 → 42) ∧
(42 → 43) and (42 → 42) ∧ ¬(42 → 43) in the [Let] rule, we are able to get rid of the case

(42 → 42) ∧ (42 → 43) as typing the application 𝑦 42 yields 0. We are thus left with the case

𝑦 : (42 → 42) ∧ ¬(42 → 43), where the type of 𝑦 features a non-trivial negative arrow.

After reduction, our example becomes:

let𝑦 = 𝜆𝑥.𝑥 in (𝑦 42, 𝑦) { ((𝜆𝑥 .𝑥) 42, 𝜆𝑥 .𝑥) { (42, 𝜆𝑥 .𝑥)

The type 42 × ((42 → 42) ∧ ¬(42 → 43)) is not derivable anymore for (42, 𝜆𝑥 .𝑥), because we
have no way to derive a negative arrow type for 𝜆𝑥.𝑥 .

A way of interpreting this example is by seeing the term 𝑦 42 as a witness of the absurdity of

deriving the type 42 → 43 for 𝑦, thus allowing to derive its negation ¬(42 → 43) using the union-

elimination mechanism embedded in the [Let] rule. After reduction, the let-binding disappears,

and thus the type ¬(42 → 43) is not derivable anymore for the 𝜆-abstraction 𝜆𝑥.𝑥 .

In order to retrieve type preservation and prove the type safety theorem, we define an aux-

iliary type system, less practical but more powerful, that is able to derive negative arrows for

𝜆-abstractions.

B.2 Preliminary definitions and lemmas
We start by proving some lemmas on ⊢ judgments.

Definition B.1 (Type scheme and environment substitution).

(∀®𝛼.𝑡)𝜙 =
def ∀®𝛼.𝑡 (𝜙 \ ®𝛼)

Σ𝜙 =
def {(𝑥 : 𝜎𝜙) | (𝑥 : 𝜎) ∈ Σ}

Lemma B.2 (Type substitution). Let Σ be an environment, 𝑒 an expression, and 𝑡 a type such that
Σ ⊢ 𝑒 : 𝑡 is derivable. Let 𝜙 be a substitution. Then, Σ𝜙 ⊢ 𝑒 : 𝑡𝜙 is derivable.

Proof. We consider a derivation 𝐷 of Σ ⊢ 𝑒 : 𝑡 and show that we can build a derivation 𝐷 ′
of

Σ𝜙 ⊢ 𝑒 : 𝑡𝜙 . We proceed by structural induction on the proof tree 𝐷 .

For the case of a [Var] rule on 𝑥 such that Σ(𝑥) = ∀®𝛼.𝑡 ′, and that performs a substitution 𝜙 ′
on

𝑡 ′, we perform a substitution (𝜙 | ®𝛼 ) ◦ 𝜙 ′
instead.

For the case of a [Let] rule that generalizes the type variables ®𝛼 , we apply the induction hypothesis
on the first premise Σ ⊢ 𝑒1 : 𝑠 in order to derive Σ(𝜙 \ ®𝛼) ⊢ 𝑒1 : 𝑠 (𝜙 \ ®𝛼). Note that Σ(𝜙 \ ®𝛼) = Σ𝜙 as we

have ®𝛼#vars(Σ). Also note that 𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖 implies 𝑠 (𝜙 \ ®𝛼) ≤ ∨

𝑖∈𝐼 𝑠𝑖 as subtyping is preserved by

substitution, and that ∀𝑖 ∈ 𝐼 . ®𝛼#vars(𝑠𝑖 ). We can thus conclude by induction on the other premises.

The other cases are straightforward. □

Definition B.3 (Application of a set of substitutions). We define the application of a set of substitu-

tions Φ on a type 𝑡 as follows:

𝑡Φ =
def

∧
𝜙∈Φ 𝑡𝜙

Definition B.4 (Subtyping on type schemes and environments).

∀®𝛼.𝑡 ≤ ∀®𝛼 ′ .𝑡 ′ ⇔ ∀𝜙 ′
s.t. dom(𝜙 ′) ⊆ ®𝛼 ′ . ∃Φ. (∀𝜙 ∈ Φ. dom(𝜙) ⊆ ®𝛼) and 𝑡Φ ≤ 𝑡 ′𝜙 ′

Σ ≤ Σ′ ⇔ ∀(𝑥 : 𝜎 ′) ∈ Σ′ . ∃(𝑥 : 𝜎) ∈ Σ. 𝜎 ≤ 𝜎 ′

Lemma B.5 (Monotonicity). Let Σ be an environment, 𝑒 an expression, and 𝑡 a type such that
Σ ⊢ 𝑒 : 𝑡 is derivable. Let Σ′ be an environment such that Σ′ ≤ Σ. Then, Σ′ ⊢ 𝑒 : 𝑡 is derivable.
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Proof. We consider a derivation 𝐷 of Σ ⊢ 𝑒 : 𝑡 and show that we can build a derivation 𝐷 ′
of

Σ′ ⊢ 𝑒 : 𝑡 . We proceed by structural induction on the proof tree 𝐷 .

For the case of a [Var] rule on 𝑥 such that Σ(𝑥) = ∀®𝛼.𝑡 that performs a substitution 𝜙 on 𝑡 ,

we can deduce from Σ′ ≤ Σ that Σ′ (𝑥) = ∀®𝛼 ′ .𝑡 ′ for some ®𝛼 ′ and 𝑡 ′, and that there exists a set of

substitutions Φ′
such that ∀𝜙 ′ ∈ Φ′ . dom(𝜙 ′) ⊆ ®𝛼 ′ and 𝑡 ′Φ′ ≤ 𝑡𝜙 . We can thus conclude with some

[≤], [∧] and [Var] rules.

Another interesting case is the case of a generalizing [Let]. If the set ®𝛼 of generalized type

variables conflicts with a type variable in vars(Σ′), we use Lemma B.2 on the first premise in order

to rename type variables in ®𝛼 into fresh type variables.

The other cases are straightforward. □

B.3 Elimination of generalizations
First, we get rid of the generalizations that may happen in [Let] nodes. Intuitively, this can be done

by using ad-hoc polymorphism (i.e. intersections) instead of parametric polymorphism.

Lemma B.6 (Elimination of qantifications). Let Σ be an environment, 𝑥 a variable, ∀®𝛼.𝑠 a
type-scheme, 𝑒 an expression, and 𝑡 a type. Let 𝐷 be a derivation of Σ, 𝑥 : ∀®𝛼.𝑠 ⊢ 𝑒 : 𝑡 . Then, there
exists a set of substitutions Φ such that ∀𝜙 ∈ Φ. dom(𝜙) ⊆ ®𝛼 and Σ, 𝑥 : 𝑠Φ ⊢ 𝑒 : 𝑡 is derivable.

Proof. We proceed by structural induction on the derivation 𝐷 .

We consider the root of 𝐷 :

[Const] We can directly conclude with an empty set of substitutions (Φ = ∅).
[Var] We can directly conclude with the set of substitutions Φ = {𝜙}, with 𝜙 the substitution

performed by this rule.

[∧] We apply the induction hypothesis to the two premises Σ, 𝑥 : ∀®𝛼.𝑠 ⊢ 𝑒 : 𝑡1 and Σ, 𝑥 : ∀®𝛼.𝑠 ⊢ 𝑒 : 𝑡2
in order to derive Σ, 𝑥 : 𝑠Φ1 ⊢ 𝑒 : 𝑡1 and Σ, 𝑥 : 𝑠Φ2 ⊢ 𝑒 : 𝑡2. We then consider the set of

substitutions Φ = Φ1 ∪ Φ2, and derive Σ, 𝑥 : 𝑠Φ ⊢ 𝑒 : 𝑡1 and Σ, 𝑥 : 𝑠Φ ⊢ 𝑒 : 𝑡2 using Lemma B.5.

We conclude with a [∧] node.
Other rules The others rules are similar to the [∧] case.

□

Definition B.7 (Generalization-free derivation). A derivation 𝐷 of a judgment Σ ⊢ 𝑒 : 𝑡 is

generalization-free if and only if every [Let] node in 𝐷 uses ®𝛼 = ∅ (it does not generalize any type

variable).

Lemma B.8 (Elimination of generalizations). Let Σ be an environment, 𝑒 an expression, and 𝑡
a type. Let 𝐷 be a derivation of Σ ⊢ 𝑒 : 𝑡 . Then, there exists a generalization-free derivation of Σ ⊢ 𝑒 : 𝑡 .

Proof. We proceed by structural induction on 𝑒 , and for a given 𝑒 , by structural induction on 𝐷 .

The interesting case is the case of a [Let]. If the [Let] has a generalization set ®𝛼 ≠ ∅, then we

apply Lemma B.6 on its premises Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡 for 𝑖 ∈ 𝐼 in order to derive, for each 𝑖 ∈ 𝐼 ,
a premise Σ, 𝑥 : (𝑠 ∧ 𝑠𝑖 )Φ𝑖 ⊢ 𝑒2 : 𝑡 . We then consider Φ =

⋃
𝑖∈𝐼 Φ𝑖 and derive for each 𝑖 ∈ 𝐼 the

judgment Σ, 𝑥 : (𝑠 ∧ 𝑠𝑖 )Φ ⊢ 𝑒2 : 𝑡 using Lemma B.5.

Then, we derive Σ ⊢ 𝑒1 : 𝑠Φ from the premise Σ ⊢ 𝑒1 : 𝑠 using Lemma B.2 and some [∧] nodes.
Finally, we apply the induction hypothesis on the derivations Σ ⊢ 𝑒1 : 𝑠Φ and Σ, 𝑥 : (𝑠∧𝑠𝑖 )Φ ⊢ 𝑒2 : 𝑡

(for each 𝑖 ∈ 𝐼 ) and use those derivations as premises of a non-generalizing [Let] node that derives

Σ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡 .

The other cases are straightforward. □
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B.4 Derivation of negative arrows
We will prove the type safety theorem by decomposing it into two lemmas: the type preservation

(i.e., typeability is preserved by reduction) and the progress (i.e., any well-typed expression is either

a value or can be reduced). However, the type preservation does not hold for our type system due

to the impossibility to derive negative arrows for 𝜆-abstraction.

[Var-N]

Σ(𝑥) = ∀®𝛼.𝑡
Σ ⊢N 𝑥 :

∧
𝑖∈𝐼 𝑡𝜙𝑖

∀𝑖 ∈ 𝐼 . dom(𝜙)𝑖 ⊆ ®𝛼 [Const-N]

Σ ⊢N 𝑐 : b𝑐

[Let-N]

Σ ⊢N 𝑒1 : 𝑠 (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : 𝑠 ∧ 𝑠𝑖 ⊢N 𝑒2 : 𝑡

Σ ⊢N let𝑥 = 𝑒1 in 𝑒2 : 𝑡
𝑠 ≤ ∨

𝑖∈𝐼 𝑠𝑖

[→I-N]

(∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : 𝑠𝑖 ⊢N 𝑒 : 𝑡𝑖

Σ ⊢N 𝜆𝑥 .𝑒 :

∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 ) ∧

∧
𝑗∈ 𝐽 ¬(𝑠′𝑗 → 𝑡 ′

𝑗
)
𝐼 ≠ ∅, ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ 𝑠𝑖 ∧ 𝑠 𝑗 ≃ 0
(∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 ) ∧

∧
𝑗∈ 𝐽 ¬(𝑠′𝑗 → 𝑡 ′

𝑗
)) ; 0

[→E-N]

Σ ⊢N 𝑒1 : 𝑡1 → 𝑡2 Σ ⊢N 𝑒2 : 𝑡1

Σ ⊢N 𝑒1𝑒2 : 𝑡2
[Choose-N]

Σ ⊢N 𝑒1 : 𝑡 Σ ⊢N 𝑒2 : 𝑡

Σ ⊢N 𝑒1 ⊕ 𝑒2 : 𝑡

[×I-N]
Σ ⊢N 𝑒1 : 𝑡1 Σ ⊢N 𝑒2 : 𝑡2

Σ ⊢N (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1-N]

Σ ⊢N 𝑒 : 𝑡1 × 𝑡2
Σ ⊢N 𝜋1𝑒 : 𝑡1

[×E2-N]

Σ ⊢N 𝑒 : 𝑡1 × 𝑡2
Σ ⊢N 𝜋2𝑒 : 𝑡2

[∈-N]
Σ ⊢N 𝑒 : 𝑠 𝑠 ∧ 𝜏 ; 0 ⇒ Σ ⊢N 𝑒1 : 𝑡 𝑠 \ 𝜏 ; 0 ⇒ Σ ⊢N 𝑒2 : 𝑡

Σ ⊢N (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡
[≤-N]

Σ ⊢N 𝑒 : 𝑡

Σ ⊢N 𝑒 : 𝑡 ′
𝑡 ≤ 𝑡 ′

Fig. 8. Declarative type system with negative arrows

A new type system with the possibility to derive negative arrow types for 𝜆-abstractions is

formalized in Figure 8. There are several things to note about this new type system. First, there

is no intersection rule: instead, the intersection is embedded into the [Var-N] and [→I-N] rules.

As shown in Lemma B.12 below, this can be done without loss of generality. The reason why

the intersection rule has been eliminated is because it would make the type system unsafe in the

presence of this new [→I-N] rule (this is explained later).

Second, the [Let-N] rule does not perform generalization. Again, the reason is that it would

make the type system unsafe in the presence of the new [→I-N] rule.

Lastly, the [→I-N] rule allows deriving any conjunction of negative arrow types for a 𝜆-

abstraction, as long as these negative arrow types are compatible with the positive arrow types

inferred. This is ensured by the side condition (∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 ) ∧
∧
𝑗∈ 𝐽 ¬(𝑠′𝑗 → 𝑡 ′𝑗 )) ; 0. This side

condition prevents a [→I-N] node from deriving the type 0 for a 𝜆-abstraction, which would be

unsound. Note that this is also the reason why the intersection rule has been removed: it would

make it possible to infer the type 0 for a 𝜆-abstraction, as shown by the derivation below.

[∧]
[→I-N]

[Var-N]

𝑥 : 0 ⊢N 𝑥 : 0

∅ ⊢N 𝜆𝑥.𝑥 : (0 → 0) ∧ ¬(false → false)
[→I-N]

[Var-N]

𝑥 : false ⊢N 𝑥 : false

∅ ⊢N 𝜆𝑥.𝑥 : false → false

∅ ⊢N 𝜆𝑥.𝑥 : 0

Although it is more subtle, the side condition ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ 𝑠𝑖 ∧ 𝑠 𝑗 ≃ 0 has the same

purpose: it prevents a potentially unsound intersection from happening. Consider the expression
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(𝜆𝑦.(𝜆𝑥.𝑥)) 42. As we have just seen, 𝜆𝑥.𝑥 can be typed false → false using a [→I-N] node,

and it can also be typed ¬(false → false) using a different [→I-N] node. When typing the

outer 𝜆-abstraction 𝜆𝑦.(𝜆𝑥.𝑥) using a [→I-N] node without this side condition, we may choose

to type it twice for the same domain 1. This way, we may derive the type (1 → (false →
false)) ∧ (1 → (¬(false → false))). The issue with this type is that it is equivalent to

1 → ((false → false) ∧¬(false → false)) ≃ 1 → 0. Consequently, the type 0 can be derived

for (𝜆𝑦.(𝜆𝑥 .𝑥)) 42, which is unsound. This issue can be avoided by forcing the domains explored for

a 𝜆-abstraction to be disjoint. By doing so, the different codomains are never intersected, regardless

of the value to which this 𝜆-abstraction is applied. This side condition is used in the proof of subject

reduction (Theorem B.16, case [→E-N]).

Lemma B.9 (Monotonicity 2). Let Σ be an environment, 𝑒 an expression, and 𝑡 a type such that
Σ ⊢N 𝑒 : 𝑡 is derivable. Let Σ′ be an environment such that Σ′ ≤ Σ. Then, Σ′ ⊢N 𝑒 : 𝑡 is derivable.

Proof. Similar to the proof of Lemma B.5. The case of a [Let-N] node does not require using a

type substitution lemma as it does not generalize type variables. □

Definition B.10 (Normalized derivation). A derivation 𝐷 of Σ ⊢ 𝑒 : 𝑡 is normalized if and only if 𝐷

is generalization-free, and every [∧] node appearing in 𝐷 applies on an expression that is either a

𝜆-abstraction or a variable.

Lemma B.11 (Normalization). Let Σ be an environment, 𝑒 an expression, and 𝑡 a type such that
Σ ⊢ 𝑒 : 𝑡 . Then, there exists a normalized derivation of Σ ⊢ 𝑒 : 𝑡 .

Proof. First, we apply Lemma B.7 on 𝐷 in order to get rid of generalizing [Let] nodes.

Now, we show that we can build a normalized derivation 𝐷 ′
of Σ ⊢ 𝑒 : 𝑡 . We proceed by structural

induction on 𝑒 , and for a given 𝑒 , by structural induction on 𝐷 .

The idea is to push [∧] nodes towards the leaves, and stop when the [∧] node has either only
leaves premises or only [→I] premises.

The interesting case is the case of a [∧] node with [Let] premises. In this case we apply the

following transformation to 𝐷 :

[∧]
[Let]

Σ ⊢ 𝑒1 : 𝑠 (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀ ®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡

Σ ⊢ let𝑥 =𝑒1 in𝑒2 : 𝑡
[Let]

Σ ⊢ 𝑒1 : 𝑠′ (∀ 𝑗 ∈ 𝐽 ) Σ, 𝑥 : ∀ ®𝛼 ′ .𝑠′ ∧ 𝑠′𝑗 ⊢ 𝑒2 : 𝑡 ′

Σ ⊢ let𝑥 =𝑒1 in𝑒2 : 𝑡 ′

Σ ⊢ let𝑥 =𝑒1 in𝑒2 : 𝑡 ∧ 𝑡 ′

↓

[Let]

[∧]
Σ ⊢ 𝑒1 : 𝑠𝜙 Σ ⊢ 𝑒1 : 𝑠′𝜙

Σ ⊢ 𝑒1 : 𝑠′′ (∀ (𝑖, 𝑗 ) ∈ 𝐼 × 𝐽 )
[∧]

Σ, 𝑥 : ∀ ®𝛼 ′′ .𝑠′′ ∧ 𝑠𝑖 ∧ 𝑠′𝑗 ⊢ 𝑒2 : 𝑡

Σ, 𝑥 : ∀ ®𝛼 ′′ .𝑠′′ ∧ 𝑠𝑖 ∧ 𝑠′𝑗 ⊢ 𝑒2 : 𝑡 ′

Σ, 𝑥 : ∀ ®𝛼 ′′ .𝑠′′ ∧ 𝑠𝑖 ∧ 𝑠′𝑗 ⊢ 𝑒2 : 𝑡 ∧ 𝑡 ′

Σ ⊢ let𝑥 =𝑒1 in𝑒2 : 𝑡 ∧ 𝑡 ′

where 𝜙 is a renaming from type variables in ®𝛼 ∪ ®𝛼 ′ to fresh type variables, 𝑠′′ = (𝑠 ∧ 𝑠′)𝜙 , and
®𝛼 ′′ = {𝜙 (𝛼) | 𝛼 ∈ ®𝛼 ∪ ®𝛼 ′}.
All the premises in the resulting derivation can be constructed from premises of the initial

derivation, using Lemma B.2 and Lemma B.5. We can then conclude this case by using the induction

hypothesis on the premises of the [Let] node.

The other cases are straightforward. □

Lemma B.12 (Inclusion of ⊢ in ⊢N). Let Σ be an environment, 𝑒 an expression, and 𝑡 a type such
that Σ ⊢ 𝑒 : 𝑡 . Then, Σ ⊢N 𝑒 : 𝑡 is derivable.
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Proof. We consider a derivation 𝐷 of Σ ⊢ 𝑒 : 𝑡 and show that we can build a derivation 𝐷 ′
of

Σ ⊢N 𝑒 : 𝑡 .

We first apply Lemma B.11 on 𝐷 in order to get a normalized derivation 𝐷 ′′
of Σ ⊢ 𝑒 : 𝑡 . We then

proceed with a straighforward structural induction on 𝐷 ′′
. □

B.5 Type preservation
Lemma B.13 (Substitution). Let Σ be an environment, 𝑥 a variable, 𝑒, 𝑒′ two expressions, and 𝑡, 𝑠

two types. Let 𝐵 be a derivation of Σ, 𝑥 : 𝑠 ⊢N 𝑒 : 𝑡 , and 𝐴 a derivation of Σ ⊢N 𝑒′ : 𝑠 . Then, there exists
a derivation of Σ ⊢N 𝑒{𝑒′/𝑥} : 𝑡 .

Proof. We build a derivation Σ ⊢N 𝑒{𝑒′/𝑥} : 𝑡 by structural induction on 𝐵.

In the case of a [Var-N] node applied on 𝑥 , we just return the derivation𝐴. Note that this [Var-N]

rule cannot perform any substitution other than the identity because the type scheme (Σ, 𝑥 : 𝑠) (𝑥)
does not have quantified type variables.

All the other cases are straightforward using Lemma B.9. □

Lemma B.14 (Atomicity of value derivations). Let Σ be an environment, and 𝑣 a value. Let 𝐷
be a derivation of Σ ⊢N 𝑣 : 𝑠 . Let {𝑡𝑖 }𝑖∈𝐼 a set of types such that 𝑠 ≤ ∨

𝑖∈𝐼 𝑡𝑖 . Then, there exists for some
𝑖 ∈ 𝐼 a derivation of Σ ⊢N 𝑣 : 𝑠 ∧ 𝑡𝑖 .

Proof. We proceed by structural induction on 𝐷 .

• If the root of 𝐷 is a [→I-N] node, then 𝑣 is a 𝜆-abstraction 𝜆𝑥 .𝑒 , and 𝑠 is a conjunction of positive

and negative arrows. Let us show that we can find 𝑖 ∈ 𝐼 such that 𝑠 ∧ 𝑡𝑖 ≥ 𝑠 ∧
∧
𝑗∈ 𝐽 ¬(𝑠′𝑗 → 𝑡 ′𝑗 )

and 𝑠 ∧∧
𝑗∈ 𝐽 ¬(𝑠′𝑗 → 𝑡 ′𝑗 ) ; 0 for some {(𝑠′𝑗 , 𝑡 ′𝑗 )} 𝑗∈ 𝐽 .

By contradiction, let us assume that it is not the case. Let us consider 𝑖 ∈ 𝐼 . We consider a set of

types {𝑠𝑘 }𝑘∈𝐾 such that 𝑠 ∧ 𝑡𝑖 =
∨
𝑘∈𝐾 𝑠 ∧ 𝑠𝑘 (𝑠 ∧ 𝑡𝑖 can be written in disjunctive normal form),

where every 𝑠𝑘 is a conjunction of positive and negative arrows. We know that, for every 𝑘 ∈ 𝐾 ,
𝑠 ∧ 𝑠𝑘 ≱ 𝑠 ∧ 𝑠′′ for every conjunction of negative arrows 𝑠′′ such that 𝑠 ∧ 𝑠′′ ; 0. This means

that, for every 𝑘 ∈ 𝐾 , there exists a positive arrow 𝑠′′
𝑘
→ 𝑡 ′′

𝑘
such that 𝑠 ∧ 𝑠𝑘 ≤ 𝑠 ∧ (𝑠′′

𝑘
→ 𝑡 ′′

𝑘
)

and (𝑠′′
𝑘
→ 𝑡 ′′

𝑘
) ≰ 𝑠 . Thus, we have 𝑠 ∧ 𝑡𝑖 ≤ 𝑠 ∧ (∨𝑘∈𝐾 𝑠

′′
𝑘
→ 𝑡 ′′

𝑘
) with∨

𝑘∈𝐾 𝑠
′′
𝑘
→ 𝑡 ′′

𝑘
≰ 𝑠 .

As this is true for every 𝑖 ∈ 𝐼 , we have 𝑠 ∧∨
𝑖∈𝐼 𝑡𝑖 ≤ 𝑠 ∧

∨
𝑖∈𝐼 (

∨
𝑘∈𝐾 𝑠

′′
𝑘
→ 𝑡 ′′

𝑘
) ≰ 𝑠 , which contra-

dicts the fact that {𝑡𝑖 }𝑖∈𝐼 covers 𝑠 . Thus, there exists some 𝑖 ∈ 𝐼 and some types {(𝑠′′
𝑘
, 𝑡 ′′
𝑘
)}𝑘∈𝐾

such that 𝑠 ∧ 𝑡𝑖 ≥ 𝑠 ∧
∧
𝑘∈𝐾 ¬(𝑠′′

𝑘
→ 𝑡 ′′

𝑘
) ; 0.

We can thus derive Σ ⊢N 𝜆𝑥 .𝑒 : 𝑠 ∧ ∧
𝑘∈𝐾 ¬(𝑠′′

𝑘
→ 𝑡 ′′

𝑘
) using a [→I-N] node, and conclude by

inserting a [≤-N] node at the root to derive Σ ⊢N 𝜆𝑥.𝑒 : 𝑠 ∧ 𝑡𝑖 .
• The other cases are straightforward.

□

Proposition B.15. Let Σ be an environment, 𝑣 a value, and 𝜏 a test type. Let 𝐷 be a derivation of
Σ ⊢N 𝑣 : 𝜏 . Then, we have the relation 𝑣 ∈ 𝜏 (see Figure 9 for the definition of ∈).

Proof. Straightforward structural induction on 𝐷 . Note that the case of 𝜆-abstractions is trivial

as arrows in 𝜏 can only be 0 → 1. □

Theorem B.16 (Type preservation). Let 𝑒, 𝑒′ be two expressions such that 𝑒 { 𝑒′, and 𝑡 be a
type. Let 𝐷 be a derivation of ∅ ⊢N 𝑒 : 𝑡 . Then, ∅ ⊢N 𝑒′ : 𝑡 is derivable.

Proof. We proceed by structural induction on 𝐷 .

We consider the root of 𝐷 :

[Const-N] Impossible case (𝑒 is not reducible).
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Reduction rules
(𝜆𝑥.𝑒)𝑣 { 𝑒{𝑣/𝑥}

let𝑥 = 𝑣 in 𝑒 { 𝑒{𝑣/𝑥}
𝜋1 (𝑣1, 𝑣2) { 𝑣1

𝜋2 (𝑣1, 𝑣2) { 𝑣2

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒1 if 𝑣 ∈ 𝜏
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒2 if 𝑣 ∈ ¬𝜏

𝑒1 ⊕ 𝑒2 { 𝑒1

𝑒1 ⊕ 𝑒2 { 𝑒2

Dynamic type test

𝑣 ∈ 𝑡 ⇔ typeof (𝑣) ≤ 𝑡 , where


typeof (𝑐) = b𝑐
typeof ((𝑣1, 𝑣2)) = typeof (𝑣1) × typeof (𝑣2)
typeof (𝜆𝑥.𝑒) =0 → 1

Evaluation Contexts

𝐸 ::= [ ] | 𝑣 𝐸 | 𝐸 𝑒 | (𝑣, 𝐸) | (𝐸, 𝑒) | 𝜋𝑖𝐸 | (𝐸∈𝜏) ? 𝑒 : 𝑒 | let𝑥 =𝐸 in 𝑒
𝑒 { 𝑒′

𝐸 [𝑒] { 𝐸 [𝑒′]

Fig. 9. Semantics of the source language

[→I-N] Impossible case (𝑒 is not reducible).

[Var-N] Impossible case (the rule cannot be applied under an empty environment).

[≤-N] By applying the induction hypothesis on the premise ∅ ⊢N 𝑒 : 𝑡 ′ (with 𝑡 ′ ≤ 𝑡 ), we get a

derivation of ∅ ⊢N 𝑒′ : 𝑡 ′, thus we can derive ∅ ⊢N 𝑒′ : 𝑡 by using a [≤-N] node.
[Choose-N] We have 𝑒 ≡ 𝑒1 ⊕ 𝑒2, and either 𝑒′ ≡ 𝑒1 or 𝑒

′ ≡ 𝑒2. In any case, we can conclude with

the corresponding premise.

[×I-N] If 𝑒 ≡ (𝑣1, 𝑒2), then the reduction happens in 𝑒2. In this case, we can conclude by using

the induction hypothesis on the second premise. Otherwise, the reduction happens in 𝑒1 with

𝑒 ≡ (𝑒1, 𝑒2). In this case, we can conclude by using the induction hypothesis on the first premise.

[→E-N] We have 𝑒 ≡ 𝑒1𝑒2. If either 𝑒1 or 𝑒2 is not a value, then we can conclude as in the previous

case. Otherwise, we have 𝑒 ≡ (𝜆𝑥.𝑒𝜆)𝑣 and 𝑒′ ≡ 𝑒𝜆{𝑣/𝑥}.
We have the following premises:

(1) ∅ ⊢N 𝜆𝑥.𝑒𝜆 : 𝑠 → 𝑡

(2) ∅ ⊢N 𝑣 : 𝑠

We can extract from (1) the collection of derivations typing the body 𝑒𝜆 : it gives us some

derivations {𝐴𝑖 }𝑖∈𝐼 of 𝑥 : 𝑠𝑖 ⊢N 𝑒𝜆 : 𝑡𝑖 for 𝑖 ∈ 𝐼 , and such that ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ 𝑠𝑖 ∧ 𝑠 𝑗 ≃ 0 (all

{𝑠𝑖 }𝑖∈𝐼 are mutually disjoint) and

∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 ) ≤ 𝑠 → 𝑡 .

By applying Lemma B.14 on the premise (2) and the set of types {𝑠𝑖 }𝑖∈𝐼 , we are able to derive a

derivation 𝐵 of ∅ ⊢N 𝑣 : 𝑠 ∧ 𝑠𝑖 for some 𝑖 ∈ 𝐼 . Using the fact that∧𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖 ) ≤ 𝑠 → 𝑡 and that

all {𝑠𝑖 }𝑖∈𝐼 are mutually disjoint, we can deduce 𝑡𝑖 ≤ 𝑡 . By inserting a [≤-N] node at the root of
𝐵, we obtain a derivation 𝐵′ of ∅ ⊢N 𝑣 : 𝑠𝑖 .

Using the substitution lemma (Lemma B.13) on 𝐴𝑖 and 𝐵
′
, we obtain a derivation of ∅ ⊢N

𝑒𝜆{𝑣/𝑥} : 𝑡𝑖 (with, we recall, 𝑡𝑖 ≤ 𝑡 ). We obtain ∅ ⊢N 𝑒𝜆{𝑣/𝑥} : 𝑡 by inserting a [≤-N] node at
the root of this derivation.

[×E1-N] We have 𝑒 ≡ 𝜋1𝑒𝜋 . If 𝑒𝜋 is not a value, then we can conclude by using the induction

hypothesis on the premise. Otherwise, we have 𝑒 ≡ 𝜋1 (𝑣1, 𝑣2).
We can extract from 𝐷 a derivation𝐴1 of ∅ ⊢N 𝑣1 : 𝑠1 and a derivation𝐴2 of ∅ ⊢N 𝑣2 : 𝑠2 such that

𝑠1 × 𝑠2 ≤ 𝑡1 × 𝑡2. We thus have 𝑠1 ≤ 𝑡1, as 𝑠2 cannot be 0 (this would contradict Proposition B.15).

Therefore, we can conclude this case by using a [≤-N] node with the premise 𝐴1 in order to

derive ∅ ⊢N 𝑣1 : 𝑡1.

[×E2-N] Similar to the previous case.
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[Let-N] We have 𝑒 ≡ let𝑥 = 𝑒1 in 𝑒2 . If 𝑒1 is not a value, then we can conclude by using the

induction hypothesis on the first premise. Otherwise, we have 𝑒 ≡ let𝑥 = 𝑣1 in 𝑒2 and 𝑒′ ≡
𝑒2{𝑣1/𝑥}.
We have the following premises:

(1) ∅ ⊢N 𝑣1 : 𝑠

(2) ∀𝑖 ∈ 𝐼 . 𝑥 : 𝑠 ∧ 𝑠𝑖 ⊢N 𝑒2 : 𝑡

By applying Lemma B.14 on the premise (1) and the set of types {𝑠𝑖 }𝑖∈𝐼 , we are able to derive a

derivation 𝐴 of ∅ ⊢N 𝑣1 : 𝑠 ∧ 𝑠𝑖 for some 𝑖 ∈ 𝐼 .
Using the substitution lemma (Lemma B.13) on the premise 𝑥 : 𝑠 ∧ 𝑠𝑖 ⊢N 𝑒2 : 𝑡 and 𝐴, we obtain

a derivation of ∅ ⊢N 𝑒2{𝑣1/𝑥} : 𝑡 .

[∈-N] We have 𝑒 ≡ (𝑒∈∈𝜏) ? 𝑒1 : 𝑒2. If 𝑒1 is not a value, then we can conclude by using the induction

hypothesis on the first premise. Otherwise, we have 𝑒 ≡ (𝑣∈𝜏) ? 𝑒1 : 𝑒2 and either 𝑒′ ≡ 𝑒1 or

𝑒′ ≡ 𝑒2.

If 𝑒′ ≡ 𝑒1, it means that 𝑣 ∈ 𝜏 . We can deduce that the first premise∅ ⊢N 𝑒 : 𝑠 is such that 𝑠∧𝜏 ; 0:
otherwise, we would have ∅ ⊢N 𝑒 : ¬𝜏 and we would deduce 𝑣 ∈ ¬𝜏 by Proposition B.15. We

can thus conclude using the with the premise ∅ ⊢N 𝑒1 : 𝑡 .

We conclude similarly for the case 𝑒′ ≡ 𝑒2.

□

B.6 Progress
Theorem B.17. Let 𝑒 be an expression and 𝑡 a type. Let 𝐷 be a derivation of ∅ ⊢N 𝑒 : 𝑡 . Then, either

𝑒 is a value or there exists an expression 𝑒′ such that 𝑒 { 𝑒′.

Proof. We proceed by structural induction on 𝐷 .

We consider the root of 𝐷 :

[Const-N] Trivial (𝑒 is a value).

[→I-N] Trivial (𝑒 is a value).

[Var-N] Impossible case (the rule cannot be applied under an empty environment).

[≤-N] By using the induction hypothesis on the premise.

[Choose-N] Trivial (𝑒 ≡ 𝑒1 ⊕ 𝑒2 and thus can be reduced).

[×I-N] We have 𝑒 ≡ (𝑒1, 𝑒2).
• If 𝑒1 is not a value, we know by applying the induction hypothesis on the first premise that

𝑒1 can be reduced. Thus, 𝑒 can also be reduced under the evaluation context ( [ ], 𝑒2).
• If 𝑒1 is a value, then we can apply the induction hypothesis on the second premise. It gives

that either 𝑒2 is a value or it can be reduced. We can easily conclude in both cases: if 𝑒2 is

a value, then 𝑒 is also a value, otherwise, 𝑒 can be reduced under the evaluation context

(𝑒1, [ ]).
[→E-N] We have 𝑒 ≡ 𝑒1𝑒2, with ∅ ⊢N 𝑒1 : 𝑠 → 𝑡 and ∅ ⊢N 𝑒2 : 𝑠 .

• If 𝑒1 is not a value, we know by applying the induction hypothesis on the first premise that

𝑒1 can be reduced. Thus, 𝑒 can also be reduced under the evaluation context [ ]𝑒2.

• If 𝑒1 is a value and 𝑒2 is not a value, we know by applying the induction hypothesis on the

second premise that 𝑒2 can be reduced. Thus, 𝑒 can also be reduced under the evaluation

context 𝑒1 [ ].
• If 𝑒1 and 𝑒2 are both values, we can apply Proposition B.15 on 𝑒1: as ∅ ⊢N 𝑒1 : 0 → 1, it

implies that 𝑒1 ∈ 0 → 1 and thus 𝑒1 ≡ 𝜆𝑥. 𝑒𝜆 . Thus, 𝑒 can be reduced using the 𝛽-reduction

rule.

[×E1-N] We have 𝑒 ≡ 𝜋1𝑒𝜋 , with ∅ ⊢N 𝑒𝜋 : 𝑡 × 𝑠 . By applying the induction hypothesis on the

premise, we know that 𝑒𝜋 is either a value or it can be reduced. If 𝑒1 can be reduced, then 𝑒 can
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also be reduced under the evaluation context 𝜋1 [ ]. Otherwise, as ∅ ⊢N 𝑒𝜋 : 1 × 1, we can apply

Proposition B.15 on it, yielding 𝑒𝜋 ∈ 1 × 1. Thus, 𝑒𝑝𝑖 ≡ (𝑣1, 𝑣2) for some values 𝑣1 and 𝑣2, and

consequently 𝑒 can be reduced with the reduction rule for left projection.

[×E2-N] Similar to the previous case.

[Let-N] We have 𝑒 ≡ let𝑥 = 𝑒1 in 𝑒2 , with ∅ ⊢N 𝑒1 : 𝑠 and ∀𝑖 ∈ 𝐼 . 𝑥 : 𝑠 ∧ 𝑠𝑖 ⊢N 𝑒2 : 𝑡 .

• If 𝑒1 is not a value, we know by applying the induction hypothesis on the first premise that

𝑒1 can be reduced. Thus, 𝑒 can also be reduced under the evaluation context let𝑥 = [ ] in 𝑒2 .

• If 𝑒1 is a value, 𝑒 can be reduced with the reduction rule for let-bindings.

[∈-N] We have 𝑒 ≡ (𝑒∈∈𝜏) ? 𝑒1 : 𝑒2.

• If 𝑒∈ is not a value, we know by applying the induction hypothesis on the first premise that

𝑒∈ can be reduced. Thus, 𝑒 can also be reduced under the evaluation context ([ ]∈𝜏) ? 𝑒1 : 𝑒2.

• If 𝑒∈ is a value, then we have either 𝑒∈ ∈ 𝜏 or 𝑒∈ ∈ ¬𝜏 . Thus, 𝑒 can be reduced with one of

the reduction rules for type-cases.

□

B.7 Type safety
We can now prove type safety by combining the type preservation and progress theorems.

Lemma B.18 (Type safety for ⊢N). For every expression 𝑒 and type 𝑡 , if ∅ ⊢N 𝑒 : 𝑡 , then for any 𝑒′

such that 𝑒 {∗ 𝑒′, we have either 𝑒′ {∗ 𝑣 for some 𝑣 such that ∅ ⊢N 𝑣 : 𝑡 , or 𝑒′ {∞.

Proof. Direct consequence of Theorem B.16 and Theorem B.17. □

Theorem B.19 (Type safety). For every expression 𝑒 and test type 𝜏 , if ∅ ⊢ 𝑒 : 𝜏 , then for any 𝑒′

such that 𝑒 {∗ 𝑒′, we have either 𝑒′ {∗ 𝑣 for some 𝑣 ∈ 𝜏 , or 𝑒′ {∞.

Proof. From ∅ ⊢ 𝑒 : 𝜏 , we can derive ∅ ⊢N 𝑒 : 𝜏 using Lemma B.12. By applying Lemma B.18 on

this new derivation, we get either:

• 𝑒′ {∞
(in which case we can directly conclude), or

• 𝑒′ {∗ 𝑣 for some 𝑣 such that ∅ ⊢N 𝑣 : 𝜏 . Then, by Proposition B.15, we get 𝑣 ∈ 𝜏 , which
allows us to conclude.

□
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C Proof of equivalence between the declarative and algorithmic systems

[Const-A]

Σ ⊢A [𝑐 | ∅] : b𝑐
[Var-A]

Σ(𝑥) = ∀®𝛼.𝑡
Σ ⊢A [𝑥 | var(𝜙)] : 𝑡𝜙

dom(𝜙) ⊆ ®𝛼

[Let-A]

Σ ⊢A [𝑒1 | 𝑎] : 𝑠 ®𝛼 = vars(𝑠) \ (vars(Σ) ∪⋃
𝑖∈𝐼 vars(𝑠𝑖 ))

(∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢A [𝑒2 | 𝑎𝑖 ] : 𝑡𝑖

Σ ⊢A [let𝑥 = 𝑒1 in 𝑒2 | let (𝑎, {(𝑠𝑖 , 𝑎𝑖 )}𝑖∈𝐼 )] :

∨
𝑖∈𝐼 𝑡𝑖

𝑠 ≤ ∨
𝑖∈𝐼 𝑠𝑖

[→I-A]

Σ, 𝑥 : 𝑠 ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝜆𝑥.𝑒 | 𝜆(𝑠, 𝑎)] : 𝑠 → 𝑡
[→E-A]

Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [𝑒1𝑒2 | @(𝑎1, 𝑎2)] : 𝑡1 ◦ 𝑡2
𝑡1 ≤ 0 → 1
𝑡2 ≤ dom(𝑡1)

[×I-A]
Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [(𝑒1, 𝑒2) | × (𝑎1, 𝑎2)] : 𝑡1 × 𝑡2
[×E𝑖 -A]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝜋𝑖𝑒 | 𝜋 (𝑎)] : 𝝅 𝑖 (𝑡)
𝑖 ∈ {1, 2}
𝑡 ≤ (1 × 1)

[∈-A]

Σ ⊢A [𝑒 | 𝑎] : 𝑠

𝑏1 = skip ⇒ 𝑠 ≤ ¬𝜏 𝑏2 = skip ⇒ 𝑠 ≤ 𝜏 Σ ⊢A [𝑒1 | 𝑏1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑏2] : 𝑡2

Σ ⊢A [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈(𝑎, 𝑏1, 𝑏2)] : 𝑡1 ∨ 𝑡2

[Choose-A]

Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2

Σ ⊢A [𝑒1 ⊕ 𝑒2 | ⊕(𝑎1, 𝑎2)] : 𝑡1 ∨ 𝑡2
[∧-A]

(∀𝑖 ∈ 𝐼 ) Σ ⊢A [𝑒 | 𝑎𝑖 ] : 𝑡𝑖

Σ ⊢A [𝑒 | ∧({𝑎𝑖 }𝑖∈𝐼 )] :

∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅

[Skip-A]

Σ ⊢A [𝑒 | skip] : 0
[Type-A]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢A [𝑒 | type(𝑎)] : 𝑡

Fig. 10. Algorithmic type system

Lemma C.1 (Inclusion of ⊢A in ⊢). Let 𝑒 be an expression, Σ a type environment, 𝑎 an annotation
tree, and 𝑡 a type. We have Σ ⊢A [𝑒 | 𝑎] : 𝑡 ⇒ Σ ⊢ 𝑒 : 𝑡 .

Proof. We consider a derivation𝐷 of Σ ⊢A [𝑒 | 𝑎] : 𝑡 and build a derivation Σ ⊢ 𝑒 : 𝑡 by structural

induction on 𝐷 .

[Const-A] Trivial.

[Var-A] Trivial.

[Let-A] We use the induction hypothesis on the first premise to derive Σ ⊢ 𝑒1 : 𝑠 , and on the other

premises to derive, for each 𝑖 ∈ 𝐼 , Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡𝑖 . Using [≤] nodes, we can derive

Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 :

∨
𝑖∈𝐼 𝑡𝑖 for each 𝑖 ∈ 𝐼 . We then use these premises in a [Let] rule to derive

Σ ⊢ let𝑥 = 𝑒1 in 𝑒2 :

∨
𝑖∈𝐼 𝑡𝑖 (we can easily check that ®𝛼 satisfies the side-conditions).

[→I-A] Trivial.

[→E-A] By definition of the ◦ type operator, we know that 𝑡1 ≤ 𝑡2 → (𝑡1◦𝑡2). By using the induction
hypothesis on the first premise followed by a [≤] node, we can thus derive Σ ⊢ 𝑒1 : 𝑡2 → (𝑡1 ◦ 𝑡2).
By using the induction hypothesis on the second premise, we can derive Σ ⊢ 𝑒2 : 𝑡2. We can

conclude with [→E] node.

[×I-A] Trivial.
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[×E1-A] By definition of the 𝝅1 type operator, we know that 𝑡 ≤ (𝝅1𝑡) × 1. We can thus conclude

by using the induction hypothesis on the premise followed by a [≤] node.
[×E2-A] Similar to the previous case.

[∈-A] We apply the induction hypothesis on the first premise, and:

• If 𝑠 ∧ 𝜏 ; 0, we apply the induction hypothesis on the Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 premise of the

corresponding [Type-A] node, and derive Σ ⊢ 𝑒1 : 𝑡1 ∨ 𝑡2 using a [≤] node, and
• If 𝑠 ∧ ¬𝜏 ; 0, we apply the induction hypothesis on the Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2 premise of the

corresponding [Type-A] node, and derive Σ ⊢ 𝑒2 : 𝑡1 ∨ 𝑡2 using a [≤] node.
We can then conclude with a [∈] node.

[Choose-A] Trivial.

[∧-A] Trivial.

□

Lemma C.2 (Inclusion of ⊢ in ⊢A). Let 𝑒 be an expression, Σ a type environment, and 𝑡 a type. If
Σ ⊢ 𝑒 : 𝑡 , then there exists an annotation tree 𝑎 and a type 𝑡 ′ such that 𝑡 ′ ≤ 𝑡 and Σ ⊢A [𝑒 | 𝑎] : 𝑡 ′.

Proof. We consider a derivation 𝐷 of Σ ⊢ 𝑒𝑡 and build an annotation tree 𝑎 and type 𝑡 ′ such that

Σ ⊢A [𝑒 | 𝑎] : 𝑡 ′. We proceed by structural induction on 𝑒 , and for a given 𝑒 , by structural induction

on 𝐷 .

[≤] Trivial.

[Const] Trivial.

[Var] Trivial.

[Let] We use the induction hypothesis on the first premise to get 𝑎 and 𝑠′ ≤ 𝑠 such that Σ ⊢A
[𝑒1 | 𝑎] : 𝑠′.
For each 𝑖 ∈ 𝐼 , we consider the premise Σ, 𝑥 : ∀®𝛼.𝑠∧𝑠𝑖 ⊢ 𝑒2 : 𝑡 . We know, from the side-conditions

of [Let], that ®𝛼 ∩ vars(𝑠 ∧ 𝑠𝑖 ) ⊆ vars(𝑠) \ (vars(Σ) ∪⋃
𝑖∈𝐼 vars(𝑠𝑖 )), and thus we can deduce

that ∀®𝛼.𝑠 ∧ 𝑠𝑖 ≤ ∀®𝛼 ′ .𝑠′ ∧ 𝑠𝑖 with ®𝛼 ′ = vars(𝑠′) \ (vars(Σ) ∪⋃
𝑖∈𝐼 vars(𝑠𝑖 )). Using Lemma B.5 on

Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡 , we get Σ, 𝑥 : ∀®𝛼 ′ .𝑠′ ∧ 𝑠𝑖 ⊢ 𝑒2 : 𝑡 , and by using the induction hypothesis

we get an annotation 𝑎𝑖 and type 𝑡𝑖 ≤ 𝑡 such that Σ, 𝑥 : ∀®𝛼 ′ .𝑠′ ∧ 𝑠𝑖 ⊢A [𝑒2 | 𝑎𝑖 ] : 𝑡𝑖 .

Finally, we build the annotation let (𝑎, {𝑎𝑖 }𝑖∈𝐼 ) to derive the type
∨
𝑖∈𝐼 𝑡𝑖 ≤ 𝑡 for let𝑥 = 𝑒1 in 𝑒2 .

[→I] Trivial.

[→E] We have the premises Σ ⊢ 𝑒1 : 𝑠 → 𝑡 and Σ ⊢ 𝑒2 : 𝑠 . By using the induction hypothesis

on these premises, we get some derivations Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 and Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2 with

𝑡1 ≤ 𝑠 → 𝑡 and 𝑡2 ≤ 𝑠 . We thus have 𝑡1 ≤ 𝑠 → 𝑡 ≤ 𝑡2 → 𝑡 . By definition of the ◦ type operator,
we can deduce that 𝑡1 ◦ 𝑡2 ≤ 𝑡 . We can thus conclude by building the annotation @(𝑎1, 𝑎2).

[×I] Trivial.

[×E1] We have the premise Σ ⊢ 𝑒′ : 𝑡 × 1. By using the induction hypothesis on this premise, we

get a derivation Σ ⊢A [𝑒′ | 𝑎] : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 × 1. By definition of the 𝝅1 type operator, we can

deduce that 𝝅1𝑡
′ ≤ 𝑡 . We can thus conclude by building the annotation 𝜋 (𝑎).

[×E2] Similar to the previous case.

[∈] We apply the induction hypothesis on the first premise to get a derivation Σ ⊢A [𝑒′ | 𝑎] : 𝑠′

with 𝑠′ ≤ 𝑠 , and:
• If 𝑠 ∧ 𝜏 ≃ 0, then we have 𝑠′ ≤ ¬𝜏 , and we pose 𝑏1 = skip. Otherwise, we apply the

induction hypothesis on the Σ ⊢ 𝑒1 : 𝑡 premise to derive Σ ⊢A [𝑒1 | 𝑎1] : 𝑡1 with 𝑡1 ≤ 𝑡 , and
we pose 𝑏1 = type(𝑎1).

• If 𝑠 ∧ ¬𝜏 ≃ 0, then we have 𝑠′ ≤ 𝜏 , and we pose 𝑏2 = skip. Otherwise, we apply the

induction hypothesis on the Σ ⊢ 𝑒2 : 𝑡 premise to derive Σ ⊢A [𝑒2 | 𝑎2] : 𝑡2 with 𝑡2 ≤ 𝑡 , and
we pose 𝑏2 = type(𝑎2).
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We can then conclude by building an annotation ∈(𝑎, 𝑏1, 𝑏2).
[Choose] Trivial.

[∧] Trivial.

□

Theorem C.3 (Eqivalence with the declarative type system). Let 𝑒 be an expression, Σ a
type environment, and 𝑡 a type.

Σ ⊢ 𝑒 : 𝑡 ⇔ ∃𝑎, 𝑡 ′ . Σ ⊢A [𝑒 | 𝑎] : 𝑡 ′ and 𝑡 ′ ≤ 𝑡

Proof. Direct consequence of Lemma C.1 and Lemma C.2. □
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D Full type reconstruction system

Partial annotations 𝑎 ::= ? | 𝑎 | untyp | ∧̄(𝐼 )
| ¯let (𝑎,𝑈 ) | @̄(𝑎, 𝑎) | 𝜋 (𝑎) | ×̄(𝑎, 𝑎) | ∈̄(𝑎, ¯𝑏, ¯𝑏) | ¯𝜆(𝑡, 𝑎)

Branch partial annotations ¯𝑏 ::= ? | 𝑏 | ¯type(𝑎)
Inter partial annotations 𝐼 ::= {𝑎, ..., 𝑎}
Union partial annotations 𝑈 ::= {(𝑡, 𝑎), ..., (𝑡, 𝑎)}

Result R ::= Ok(𝑎, 𝑡) | Fail | Subst(Φ, 𝑎, 𝑎)

The deduction rules are ordered by decreasing priority (the first rule that can apply must be

applied).

D.1 Threading rules

[Subst-R]

Σ ⊢R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎1, 𝑎2)
Σ ⊢∗R [𝑒 | ∧̄({𝑎1𝜙 | 𝜙 ∈ Φ} ∪ {𝑎2})] ⇒ R

Σ ⊢∗R [𝑒 | 𝑎] ⇒ R
∀𝜙 ∈ Φ. dom(𝜙)#vars(Σ)

[Propagate-R]

Σ ⊢R [𝑒 | 𝑎] ⇒ R

Σ ⊢∗R [𝑒 | 𝑎] ⇒ R
[Branch1-R]

Σ ⊢R [𝑒 | skip] ⇒ R

Σ ⊢∗R [𝑒 | skip] ⇒ R

[Branch2-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡)
Σ ⊢∗R [𝑒 | ¯type(𝑎)] ⇒ Ok(type(𝑎), 𝑡)

[Branch3-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Fail

Σ ⊢∗R [𝑒 | ¯type(𝑎)] ⇒ Fail

[Branch4-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢∗R [𝑒 | ¯type(𝑎)] ⇒ Subst(Φ, type(𝑎′), type(𝑎′′))

D.2 Structural rules

[Ok1-R]

Σ ⊢A [𝑒 | 𝑎] : 𝑡

Σ ⊢R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡)
[Ok2-R]

Σ ⊢A [𝑒 | 𝑏] : 𝑡

Σ ⊢R [𝑒 | 𝑏] ⇒ Ok(𝑏, 𝑡)

[Fail-R]

Σ ⊢R [𝑒 | untyp] ⇒ Fail

[Const-R]

Σ ⊢R [𝑐 | ∅] ⇒ R

Σ ⊢R [𝑐 | ?] ⇒ R
[Var-R]

Σ(𝑥) = ∀®𝛼.𝑡 𝜙 = {𝛼 { fresh}𝛼∈ ®𝛼
Σ ⊢R [𝑥 | var(𝜙)] ⇒ R

Σ ⊢R [𝑥 | ?] ⇒ R
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Pairs.

[×I1-R]
Σ ⊢R [(𝑒1, 𝑒2) | ×̄(?, ?)] ⇒ R

Σ ⊢R [(𝑒1, 𝑒2) | ?] ⇒ R
[×I2-R]

Σ ⊢∗R [𝑒𝑖 | 𝑎𝑖 ] ⇒ Fail

Σ ⊢R [(𝑒1, 𝑒2) | ×̄(𝑎1, 𝑎2)] ⇒ Fail
𝑖 ∈ {1, 2}

[×I3-R]
Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Subst(Φ, 𝑎′

1
, 𝑎′′

1
)

Σ ⊢R [(𝑒1, 𝑒2) | ×̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, ×̄(𝑎′
1
, 𝑎2), ×̄(𝑎′′1 , 𝑎2))

[×I4-R]
Σ ⊢∗R [𝑒2 | 𝑎2] ⇒ Subst(Φ, 𝑎′

2
, 𝑎′′

2
)

Σ ⊢R [(𝑒1, 𝑒2) | ×̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, ×̄(𝑎1, 𝑎
′
2
), ×̄(𝑎1, 𝑎

′′
2
))

[×I5-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑡1)
Σ ⊢∗R [𝑒2 | 𝑎2] ⇒ Ok(𝑎2, 𝑡2) Σ ⊢R [(𝑒1, 𝑒2) | × (𝑎1, 𝑎2)] ⇒ R

Σ ⊢R [(𝑒1, 𝑒2) | ×̄(𝑎1, 𝑎2)] ⇒ R

Non-deterministic choices. Similar to the rules for pairs.

Projections.

[×E1-R]

Σ ⊢R [𝜋𝑖𝑒 | 𝜋 (?)] ⇒ R

Σ ⊢R [𝜋𝑖𝑒 | ?] ⇒ R
𝑖 ∈ {1, 2} [×E2-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Fail

Σ ⊢R [𝜋𝑖𝑒 | 𝜋 (𝑎)] ⇒ Fail
𝑖 ∈ {1, 2}

[×E3-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢R [𝜋𝑖𝑒 | 𝜋 (𝑎)] ⇒ Subst(Φ, 𝜋 (𝑎′), 𝜋 (𝑎′′))

𝑖 ∈ {1, 2}

[×E4-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) {𝑡 ¤≤ 𝛼 × 1} ⊩ Φ

Σ ⊢R [𝜋1𝑒 | 𝜋 (𝑎)] ⇒ Subst(Φ, 𝜋 (𝑎), untyp)
𝛼 fresh

[×E5-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) {𝑡 ¤≤ 1 × 𝛼} ⊩ Φ

Σ ⊢R [𝜋2𝑒 | 𝜋 (𝑎)] ⇒ Subst(Φ, 𝜋 (𝑎), untyp)
𝛼 fresh

Abstractions.

[→I1-R]

Σ ⊢R [𝜆𝑥 .𝑒 | ¯𝜆(𝛼, ?)] ⇒ R

Σ ⊢R [𝜆𝑥.𝑒 | ?] ⇒ R
𝛼 fresh [→I2-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Fail

Σ ⊢R [𝜆𝑥.𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ Fail

[→I3-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢R [𝜆𝑥 .𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ Subst(Φ, ¯𝜆(𝑠, 𝑎′), ¯𝜆(𝑠, 𝑎′′))

[→I4-R]

Σ, 𝑥 : 𝑠 ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑡) Σ ⊢R [𝜆𝑥 .𝑒 | 𝜆(𝑠, 𝑎)] ⇒ R

Σ ⊢R [𝜆𝑥.𝑒 | ¯𝜆(𝑠, 𝑎)] ⇒ R
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Applications.

[→E1-R]

Σ ⊢R [𝑒1𝑒2 | @̄(?, ?)] ⇒ R

Σ ⊢R [𝑒1𝑒2 | ?] ⇒ R
[→E2-R]

Σ ⊢∗R [𝑒𝑖 | 𝑎𝑖 ] ⇒ Fail

Σ ⊢R [𝑒1𝑒2 | @̄(𝑎1, 𝑎2)] ⇒ Fail
𝑖 ∈ {1, 2}

[→E3-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Subst(Φ, 𝑎′
1
, 𝑎′′

1
)

Σ ⊢R [𝑒1𝑒2 | @̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, @̄(𝑎′
1
, 𝑎2), @̄(𝑎′′1 , 𝑎2))

[→E4-R]

Σ ⊢∗R [𝑒2 | 𝑎2] ⇒ Subst(Φ, 𝑎′
2
, 𝑎′′

2
)

Σ ⊢R [𝑒1𝑒2 | @̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, @̄(𝑎1, 𝑎
′
2
), @̄(𝑎1, 𝑎

′′
2
))

[→E5-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑡1)
Σ ⊢∗R [𝑒2 | 𝑎2] ⇒ Ok(𝑎2, 𝑡2) {𝑡1 ¤≤ 𝑡2 → 𝛼} ⊩ Φ

Σ ⊢R [𝑒1𝑒2 | @̄(𝑎1, 𝑎2)] ⇒ Subst(Φ, @(𝑎1, 𝑎2), untyp)
𝛼 fresh

Type-cases.

[∈1-R]

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(?, ?, ?)] ⇒ R

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ?] ⇒ R
[∈2-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Fail

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ Fail

[∈3-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ Subst(Φ, ∈̄(𝑎′, ¯𝑏1, ¯𝑏2), ∈̄(𝑎′′, ¯𝑏1, ¯𝑏2))

[∈4-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) {𝑠 ¤≤ ¬𝜏} ⊩ Φ

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ?, ¯𝑏2)] ⇒ Subst(Φ, ∈(𝑎, skip, ¯𝑏2), ∈(𝑎, ¯type(?), ¯𝑏2))

[∈5-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) {𝑠 ¤≤ 𝜏} ⊩ Φ

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ?)] ⇒ Subst(Φ, ∈(𝑎, ¯𝑏1, skip), ∈(𝑎, ¯𝑏1, ¯type(?)))

[∈6-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) Σ ⊢∗R [𝑒𝑖 | ¯𝑏𝑖 ] ⇒ Fail

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ Fail
𝑖 ∈ {1, 2}

[∈7-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) Σ ⊢∗R [𝑒1 | ¯𝑏1] ⇒ Subst(Φ, ¯𝑏′
1
, ¯𝑏′′

1
)

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ Subst(Φ, ∈̄(𝑎, ¯𝑏′
1
, ¯𝑏2), ∈̄(𝑎, ¯𝑏′′

1
, ¯𝑏2))

[∈8-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) Σ ⊢∗R [𝑒2 | ¯𝑏2] ⇒ Subst(Φ, ¯𝑏′
2
, ¯𝑏′′

2
)

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ Subst(Φ, ∈̄(𝑎, ¯𝑏1, ¯𝑏′
2
), ∈̄(𝑎, ¯𝑏1, ¯𝑏′′

2
))

[∈9-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Ok(𝑎, 𝑠) Σ ⊢∗R [𝑒1 | ¯𝑏1] ⇒ Ok(𝑏1, 𝑡1)
Σ ⊢∗R [𝑒2 | ¯𝑏2] ⇒ Ok(𝑏2, 𝑡2) Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈(𝑎, 𝑏1, 𝑏2)] ⇒ R

Σ ⊢R [(𝑒∈𝜏) ? 𝑒1 : 𝑒2 | ∈̄(𝑎, ¯𝑏1, ¯𝑏2)] ⇒ R
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Let-bindings.

[Let1-R]

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (?, {(𝑠𝑖 , ?)}𝑖∈𝐼 )] ⇒ R

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ?] ⇒ R
{𝑠𝑖 }𝑖∈𝐼 = decomposition(Σ, 𝑥, 𝑒2)

[Let2-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Fail

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1,𝑈 )] ⇒ Fail

[Let3-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Subst(Φ, 𝑎′
1
, 𝑎′′

1
)

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1,𝑈 )] ⇒ Subst(Φ, ¯let (𝑎′
1
,𝑈 ), ¯let (𝑎′′

1
,𝑈 ))

[Let4-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑠)
𝑠 ∧ 𝑠′ ≃ 0 Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1,𝑈 )] ⇒ R

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1, {(𝑠′, 𝑎2)} ∪𝑈 )] ⇒ R

[Let5-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑠) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠′ ⊢∗R [𝑒2 | 𝑎2] ⇒ Fail

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1, {(𝑠′, 𝑎2)} ∪𝑈 )] ⇒ Fail
(★)

[Let6-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑠) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠′ ⊢∗R [𝑒2 | 𝑎2] ⇒ Subst(Φ, 𝑎′
2
, 𝑎′′

2
)

R = Subst(Φ, ¯let (𝑎1, {(𝑠′, 𝑎′2)} ∪𝑈 ), ¯let (𝑎1, {(𝑠′, 𝑎′′2 )} ∪𝑈 ))
Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1, {(𝑠′, 𝑎2)} ∪𝑈 )] ⇒ R

(★)

[Let7-R]

Σ ⊢∗R [𝑒1 | 𝑎1] ⇒ Ok(𝑎1, 𝑠) (∀𝑖 ∈ 𝐼 ) Σ, 𝑥 : ∀®𝛼.𝑠 ∧ 𝑠𝑖 ⊢∗R [𝑒2 | 𝑎𝑖 ] ⇒ Ok(𝑎𝑖 , 𝑡)
Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | let (𝑎1, {(𝑠𝑖 , 𝑎𝑖 )}𝑖∈𝐼 )] ⇒ R

Σ ⊢R [let𝑥 = 𝑒1 in 𝑒2 | ¯let (𝑎1, {(𝑠𝑖 , 𝑎𝑖 )}𝑖∈𝐼 )] ⇒ R
(★)

where, in (★) rules, we have ®𝛼 =

{
vars(𝑠) \ vars(Σ) if no value restriction, or if value(𝑒1)
∅ otherwise

Intersections.

[∧1-R]

Σ ⊢R [𝑒 | ∧̄({})] ⇒ Fail
[∧2-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Fail Σ ⊢R [𝑒 | ∧̄(𝐼 )] ⇒ R

Σ ⊢R [𝑒 | ∧̄({𝑎} ∪ 𝐼 )] ⇒ R

[∧3-R]

Σ ⊢∗R [𝑒 | 𝑎] ⇒ Subst(Φ, 𝑎′, 𝑎′′)
Σ ⊢R [𝑒 | ∧̄({𝑎} ∪ 𝐼 )] ⇒ Subst(Φ, ∧̄({𝑎′} ∪ 𝐼 ), ∧̄({𝑎′′} ∪ 𝐼 ))

[∧4-R]

(∀𝑖 ∈ 𝐼 ) Σ ⊢∗R [𝑒 | 𝑎𝑖 ] ⇒ Ok(𝑎𝑖 , 𝑡𝑖 ) Σ ⊢R [𝑒 | ∧({𝑎𝑖 }𝑖∈𝐼 )] ⇒ R

Σ ⊢R [𝑒 | ∧̄({𝑎𝑖 }𝑖∈𝐼 )] ⇒ R
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E Definition and proofs of opaque data types
For simplicity, we consider in this appendix a unique opaque data type #(.). We first extend the

interpretation domain D and interpretation J.K to support #(.) types. The interpretation J.K𝐹 we
define is parametrized by a function 𝐹 : P(D) → P(D) that defines the interpretation of #(.)
types.

The interpretation domain D is the set of finite terms 𝑑 produced inductively by the following

grammar:

𝑑 F 𝑐𝐿 | (𝑑,𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿 | #(𝑑)𝐿

𝜕 F 𝑑 | Ω
Let 𝐹 : P(D) → P(D). Let J.K𝐹 : T → D be an interpretation such that:

J0K𝐹 = ∅ J𝛼K𝐹 = {𝑑 | 𝛼 ∈ tags(𝑑)} J𝑡1 ∨ 𝑡2K𝐹 = J𝑡1K𝐹 ∪ J𝑡2K𝐹
J𝑏K𝐹 = B(𝑏) J¬𝑡K𝐹 = D \ J𝑡K𝐹 J𝑡1 ∧ 𝑡2K𝐹 = J𝑡1K𝐹 ∩ J𝑡2K𝐹

J𝑡1→𝑡2K𝐹 = {𝑅 ∈ Pfin (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅. 𝑑 ∈ J𝑡1K𝐹 =⇒ 𝜕 ∈ J𝑡2K𝐹 }
J𝑡1 × 𝑡2K𝐹 = J𝑡1K𝐹 × J𝑡2K𝐹 J#(𝑡)K𝐹 = {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑡K𝐹 )}

We define the subtyping relation ≤𝐹 as 𝑡1 ≤𝐹 𝑡2 ⇐⇒def J𝑡1K𝐹 ⊆ J𝑡2K𝐹 , and the equivalence
relation ≃𝐹 as 𝑡1 ≃𝐹 𝑡2 ⇐⇒def J𝑡1K𝐹 = J𝑡2K𝐹 .

E.1 General case (invariant parameter)
In this section, we make no particular assumption over 𝐹 . We extend the subtyping algorithm with

this case for #(.) types:∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤
∨
𝑛∈𝑁

#(𝑠𝑛) ⇔ ∃𝑝 ∈ 𝑃 . ∃𝑛 ∈ 𝑁 . 𝑡𝑝 ≃ 𝑠𝑛

Theorem E.1 (Soundness of the characterization).∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛) ⇐= ∃𝑝 ∈ 𝑃 . ∃𝑛 ∈ 𝑁 . 𝑡𝑝 ≃𝐹 𝑠𝑛

Proof. Let 𝑝 ∈ 𝑃 and 𝑛 ∈ 𝑁 such that 𝑡𝑝 ≃𝐹 𝑠𝑛 .
𝑡𝑝 ≃𝐹 𝑠𝑛

⇒ J𝑡𝑝K𝐹 = J𝑠𝑛K𝐹
⇒ 𝐹 (J𝑡𝑝K𝐹 ) = 𝐹 (J𝑠𝑛K𝐹 )
⇒ {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑡𝑝K𝐹 )} = {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑠𝑛K𝐹 )}
⇒ J#(𝑡𝑝 )K𝐹 = J#(𝑠𝑛)K𝐹
⇒

⋂
𝑝∈𝑃

J#(𝑡𝑝 )K𝐹 ⊆
⋃
𝑛∈𝑁

J#(𝑠𝑛)K𝐹

⇒ J
∧
𝑝∈𝑃

#(𝑡𝑝 )K𝐹 ⊆ J
∨
𝑛∈𝑁

#(𝑠𝑛)K𝐹

⇒
∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛)

□
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The soundness of the whole subtyping algorithm can be derived from [Castagna and Xu 2011,

Theorem 3.16] and Theorem E.1.

E.2 Monotonic case (covariant parameter)
In this section, we assume that 𝐹 is monotonic, that is: ∀𝐷, 𝐷 ′ ⊆ D . 𝐷 ⊆ 𝐷 ′ =⇒ 𝐹 (𝐷) ⊆ 𝐹 (𝐷 ′).
We extend the subtyping algorithm with this case for #(.) types:

∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤
∨
𝑛∈𝑁

#(𝑠𝑛) ⇔ ∃𝑝 ∈ 𝑃 . ∃𝑛 ∈ 𝑁 . 𝑡𝑝 ≤ 𝑠𝑛

Theorem E.2 (Soundness of the characterization).∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛) ⇐= ∃𝑝 ∈ 𝑃 . ∃𝑛 ∈ 𝑁 . 𝑡𝑝 ≤𝐹 𝑠𝑛

Proof. Let 𝑝 ∈ 𝑃 and 𝑛 ∈ 𝑁 such that 𝑡𝑝 ≤𝐹 𝑠𝑛 .

𝑡𝑝 ≤𝐹 𝑠𝑛
⇒ J𝑡𝑝K𝐹 ⊆ J𝑠𝑛K𝐹
⇒ 𝐹 (J𝑡𝑝K𝐹 ) ⊆ 𝐹 (J𝑠𝑛K𝐹 ) (by monotonicity)

⇒ {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑡𝑝K𝐹 )} ⊆ {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑠𝑛K𝐹 )}
⇒ J#(𝑡𝑝 )K𝐹 ⊆ J#(𝑠𝑛)K𝐹
⇒

⋂
𝑝∈𝑃

J#(𝑡𝑝 )K𝐹 ⊆
⋃
𝑛∈𝑁

J#(𝑠𝑛)K𝐹

⇒ J
∧
𝑝∈𝑃

#(𝑡𝑝 )K𝐹 ⊆ J
∨
𝑛∈𝑁

#(𝑠𝑛)K𝐹

⇒
∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛)

□

E.3 Monotonic ∩-preserving case
In this section, we assume that 𝐹 is monotonic, and that it preserves ∩: ∀𝐷, 𝐷 ′ ⊆ D . 𝐷 ⊆ 𝐷 ′ =⇒
𝐹 (𝐷) ⊆ 𝐹 (𝐷 ′), and ∀𝐷,𝐷 ′ ⊆ D . 𝐹 (𝐷 ∩ 𝐷 ′) = 𝐹 (𝐷) ∩ 𝐹 (𝐷 ′). We extend the subtyping algorithm

with this case for #(.) types:

∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤
∨
𝑛∈𝑁

#(𝑠𝑛) ⇔ ∃𝑛 ∈ 𝑁 .
∧
𝑝∈𝑃

𝑡𝑝 ≤ 𝑠𝑛

Theorem E.3 (Soundness of the characterization).∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛) ⇐= ∃𝑛 ∈ 𝑁 .
∧
𝑝∈𝑃

𝑡𝑝 ≤𝐹 𝑠𝑛
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Proof. Let 𝑛 ∈ 𝑁 such that

∧
𝑝∈𝑃 𝑡𝑝 ≤ 𝑠𝑛 .

∧
𝑝∈𝑃

𝑡𝑝 ≤𝐹 𝑠𝑛

⇒ J
∧
𝑝∈𝑃

𝑡𝑝K𝐹 ⊆ J𝑠𝑛K𝐹

⇒
⋂
𝑝∈𝑃

J𝑡𝑝K𝐹 ⊆ J𝑠𝑛K𝐹

⇒ 𝐹 (
⋂
𝑝∈𝑃

J𝑡𝑝K𝐹 ) ⊆ 𝐹 (J𝑠𝑛K𝐹 ) (by monotonicity)

⇒
⋂
𝑝∈𝑃

𝐹 (J𝑡𝑝K𝐹 ) ⊆ 𝐹 (J𝑠𝑛K𝐹 ) (by ∩-preservation)

⇒ {#(𝑑) | 𝑑 ∈
⋂
𝑝∈𝑃

𝐹 (J𝑡𝑝K𝐹 )} ⊆ {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑠𝑛K𝐹 )}

⇒ J#(𝑡𝑝 )K𝐹 ⊆ J#(𝑠𝑛)K𝐹
⇒

⋂
𝑝∈𝑃

J#(𝑡𝑝 )K𝐹 ⊆
⋃
𝑛∈𝑁

J#(𝑠𝑛)K𝐹

⇒ J
∧
𝑝∈𝑃

#(𝑡𝑝 )K𝐹 ⊆ J
∨
𝑛∈𝑁

#(𝑠𝑛)K𝐹

⇒
∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛)

□

E.4 Monotonic ∪-preserving case
In this section, we assume that 𝐹 is monotonic, and that it preserves ∪: ∀𝐷, 𝐷 ′ ⊆ D . 𝐷 ⊆ 𝐷 ′ =⇒
𝐹 (𝐷) ⊆ 𝐹 (𝐷 ′), and ∀𝐷,𝐷 ′ ⊆ D . 𝐹 (𝐷 ∪ 𝐷 ′) = 𝐹 (𝐷) ∪ 𝐹 (𝐷 ′). We extend the subtyping algorithm

with this case for #(.) types:

∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤
∨
𝑛∈𝑁

#(𝑠𝑛) ⇔ ∃𝑝 ∈ 𝑃 . 𝑡𝑝 ≤
∨
𝑛∈𝑁

𝑠𝑛

Theorem E.4 (Soundness of the characterization).

∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛) ⇐= ∃𝑝 ∈ 𝑃 . 𝑡𝑝 ≤𝐹
∨
𝑛∈𝑁

𝑠𝑛
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Proof. Let 𝑝 ∈ 𝑃 such that 𝑡𝑝 ≤𝐹
∨
𝑛∈𝑁 𝑠𝑛 .

𝑡𝑝 ≤𝐹
∨
𝑛∈𝑁

𝑠𝑛

⇒ J𝑡𝑝K𝐹 ⊆ J
∨
𝑛∈𝑁

𝑠𝑛K𝐹

⇒ J𝑡𝑝K𝐹 ⊆
⋃
𝑛∈𝑁

J𝑠𝑛K𝐹

⇒ 𝐹 (J𝑡𝑝K𝐹 ) ⊆ 𝐹 (
⋃
𝑛∈𝑁

J𝑠𝑛K𝐹 ) (by monotonicity)

⇒ 𝐹 (J𝑡𝑝K𝐹 ) ⊆
⋃
𝑛∈𝑁

𝐹 (J𝑠𝑛K𝐹 ) (by ∪-preservation)

⇒ {#(𝑑) | 𝑑 ∈ 𝐹 (J𝑡𝑝K𝐹 )} ⊆ {#(𝑑) | 𝑑 ∈
⋃
𝑛∈𝑁

𝐹 (J𝑠𝑛K𝐹 )}

⇒ J#(𝑡𝑝 )K𝐹 ⊆ J#(𝑠𝑛)K𝐹
⇒

⋂
𝑝∈𝑃

J#(𝑡𝑝 )K𝐹 ⊆
⋃
𝑛∈𝑁

J#(𝑠𝑛)K𝐹

⇒ J
∧
𝑝∈𝑃

#(𝑡𝑝 )K𝐹 ⊆ J
∨
𝑛∈𝑁

#(𝑠𝑛)K𝐹

⇒
∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛)

□

E.5 Monotonic ∩-∪-preserving case (tagged value)
In this section, we assume that 𝐹 is monotonic, and that it preserves ∩ and ∪: ∀𝐷,𝐷 ′ ⊆ D . 𝐷 ⊆
𝐷 ′ =⇒ 𝐹 (𝐷) ⊆ 𝐹 (𝐷 ′), and ∀𝐷, 𝐷 ′ ⊆ D . 𝐹 (𝐷∩𝐷 ′) = 𝐹 (𝐷)∩𝐹 (𝐷 ′), and ∀𝐷,𝐷 ′ ⊆ D . 𝐹 (𝐷∪𝐷 ′) =
𝐹 (𝐷) ∪ 𝐹 (𝐷 ′). We extend the subtyping algorithm with this case for #(.) types:∧

𝑝∈𝑃
#(𝑡𝑝 ) ≤

∨
𝑛∈𝑁

#(𝑠𝑛) ⇔
∧
𝑝∈𝑃

𝑡𝑝 ≤
∨
𝑛∈𝑁

𝑠𝑛

Theorem E.5 (Soundness of the characterization).∧
𝑝∈𝑃

#(𝑡𝑝 ) ≤𝐹
∨
𝑛∈𝑁

#(𝑠𝑛) ⇐=
∧
𝑝∈𝑃

𝑡𝑝 ≤𝐹
∨
𝑛∈𝑁

𝑠𝑛

Proof. Similar to the two previous cases. □
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F Additional code examples
Original filtermap function from [Schimpf et al. 2023]:

spec filtermap(fun((T) -> boolean()), [T]) -> [T]
; (fun((T) -> {true, U} | false), [T]) -> [U]
; (fun((T) -> {true, U} | boolean()), [T]) -> [T | U].

filtermap(_F, []) -> [];
filtermap(F, [X|XS]) ->
case F(X) of
false -> filtermap(F, XS );
true -> [X | filtermap(F, XS)];
{true, Y} -> [Y | filtermap(F, XS)]

end.

Translation of filtermap for MLsem:

val filtermap :
(( 't -> ((true, ' u) | false), [ 't ∗]) -> [ 'u ∗])

& (( 't -> ((true, ' u) | bool), [ 't ∗]) -> [( 't | ' u) ∗])

let filtermap (f, l) =
match l with
| [] -> []

| x::xs ->

match f x with
| false -> filtermap (f, xs)

| true -> x::(filtermap (f, xs))

| (true, y) -> y::(filtermap (f, xs))

end
end
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Auxiliary definitions for the bal function from [OCaml 2023]:

val invalid_arg : string -> empty
val (<) : int -> int -> bool
val (<=) : int -> int -> bool
val (>) : int -> int -> bool
val (>=) : int -> int -> bool

type t( 'a) =
Nil | (t( 'a), Key, 'a, t( 'a), int)

let height (x: t( 'a)) =
match x with
| :Nil -> 0

| (_,_,_,_,h) -> h

end

let create l x d r =
let hl = height l in
let hr = height r in
(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

Auxiliary definitions for the 14 examples from [Tobin-Hochstadt and Felleisen 2010]:

let and_ = fun (x, y) ->
if x is true then if y is true then x else false else false

let not_ = fun x -> if x is true then false else true
let or_ = fun (x,y) ->

not_ (and_ (not_ x, not_ y))

let is_string = fun x ->
if x is string then true else false

let is_int = fun x ->
if x is int then true else false

val strlen : string -> int
val add : int -> int -> int
val add1 : int -> int
val f : (int | string) -> int
val g : (int, int) -> int
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Translation of bal for MLsem:

(∗ Uncomment to type-check with type narrowing disabled ∗)
(∗ #type_narrowing = false ∗)

val bal : t( 'a) -> Key -> ' a -> t( 'a) -> t( 'a)

let bal l x d r =
(∗ let bal (l:t( 'a)) (x: Key) (d: 'a) (r:t( 'a)) : t( 'a) = ∗)

let hl = match l with :Nil -> 0 | (_,_,_,_,h) -> h end in
let hr = match r with :Nil -> 0 | (_,_,_,_,h) -> h end in
if hl > (hr + 2) then
match l with
| :Nil -> invalid_arg "Map.bal"

| (ll, lv, ld, lr, _) ->

if (height ll) >= (height lr) then
create ll lv ld (create lr x d r)

else match lr with
| :Nil -> invalid_arg "Map.bal"

| (lrl, lrv, lrd, lrr, _)->

create (create ll lv ld lrl) lrv lrd (create lrr x d r)

end
end
else if hr > (hl + 2) then
match r with
| :Nil -> invalid_arg "Map.bal"

| (rl, rv, rd, rr, _) ->

if (height rr) >= (height rl) then
create (create l x d rl) rv rd rr

else match rl with
| :Nil -> invalid_arg "Map.bal"

| (rll, rlv, rld, rlr, _) ->

create (create l x d rll) rlv rld (create rlr rv rd rr)

end
end
else (l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
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Translation of the 14 examples from [Tobin-Hochstadt and Felleisen 2010] for MLsem:

let example1 = fun (x:any) ->
if x is int then add1 x else 0

let example2 = fun (x:string|int) ->
if x is int then add1 x else strlen x

let example3 = fun (x: any) ->
if x is (any \ false) then (x,x) else false

let example4 = fun (x : any) ->
if or_ (is_int x, is_string x) is true then x else 'A '

let example5 = fun (x : any) -> fun (y : any) ->
if and_ (is_int x, is_string y) is true then
add x (strlen y) else 0

val example6 : (int -> string -> int) & (string -> any -> int)
let example6 = fun x -> fun y ->

if and_ (is_int x, is_string y) is true then
add x (strlen y) else strlen x

let example7 = fun (x : any) -> fun (y : any) ->
if (if is_int x is true then is_string y else false) is true then
add x (strlen y) else 0

let example8 = fun (x : any) ->
if or_ (is_int x, is_string x) is true then true else false

let example9 = fun (x : any) ->
if (if is_int x is true then is_int x else is_string x) is true
then f x else 0

let example10 = fun (p : (any,any)) ->
if is_int (fst p) is true then add1 (fst p) else 7

let example11 = fun (p : (any, any)) ->
if and_ (is_int (fst p), is_int (snd p)) is true then g p else No

let example12 = fun (p : (any, any)) ->
if is_int (fst p) is true then true else false

let example13 =
fun (x : any) ->

fun (y : any) ->
if and_ (is_int x, is_string y) is true then 1
else if is_int x is true then 2
else 3

let example14 = fun (input : int|string) ->
fun (extra : (any, any)) ->

if and_(is_int input , is_int(fst extra)) is true then
add input (fst extra)

else if is_int(fst extra) is true then
add (strlen input) (fst extra)

else 0

Unannotated versions are similar but with no type annotation on the parameters of functions.
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