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KIM NGUYỄN∗, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Set-theoretic types provide a rich type algebra that supports unrestricted unions, intersections, and negations,

together with a decidable type constraint-solving algorithm known as tallying. These types are particularly

well suited for typing dynamic languages, where functions often exhibit both generic and overloaded behavior.

However, the complexity of their implementation has hindered their widespread adoption. In this paper,

we introduce a modular representation for set-theoretic types and revisit the algorithms for subtyping and

tallying. We compare our approach with the historical CDuce implementation and evaluate the performance

impact of some optimizations and design choices.

CCS Concepts: • Theory of computation→ Type structures; • Software and its engineering → Polymor-
phism; Data types and structures.
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1 Introduction
For over a decade, programmers have added static type systems to dynamic, originally untyped

languages such as JavaScript and Python. These efforts aim to combine the flexibility of dynamic

typing with the reliability of static type checking. Examples of such type systems are TypeScript

and Flow for JavaScript or Mypy, Pyre and Pyright for Python. To account for the variety of

programming patterns expressible in untyped languages, these type systems often feature several

(if not all) of the typing constructs that are part of the programming language literature, namely:

• parametric polymorphism (often referred to as generics)
• overloading or ad-hoc polymorphism, together with subtyping

• occurrence typing [27] (the refinement of a type following a dynamic type test)

• arbitrary union types (e.g. to express heterogenous collections or optional results)

• intersection types (in particular for functions or records)

• gradual typing [26], the ability to mix typed and untyped code

Mixing together all of these, in a principled way, is a daunting task. Most, if not all the previously

mentioned systems do not guaranty type safety and mix the various typing constructs in an ad-hoc

way. Yet, for some of their use cases (documentation, test generation, code completion in IDE, . . . )

they provide excellent performance, and are able to infer some type information relatively quickly.

A theoretical formalism handling these features does exist: set-theoretic types. They were first

introduced in the context of XML programming [18, 21] and later extended with parametric

polymorphism [13], gradual typing [10] and type narrowing [11]. While set-theoretic types have

started to be used as a theoretical foundation for type systems (e.g. Etylizer [25] for Erlang, Elixir [8]),

they have not seen the wide adoption one could have hoped for. We believe that one of the main

issues is the disconnect between the mathematically elegant theoretical foundation and the design

and implementation issues a practical implementation faces.

The goal of this work is to report on SSTT, the simple set-theoretic type library, a reference

implementation of set-theoretic types. We cover the implementation and data-structure of the basic

type algebra, show how to extend it to cover practical (but often ignored) data types, and present
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implementation techniques of high-level operators, namely subtyping and tallying (computing a

set of substitutions that solve a subtyping constraint).

1.1 Overview
As a practical introduction to set-theoretic types, we use the following example from [13].

val map : ∀𝛼, 𝛽.(𝛼 → 𝛽) → [𝛼*] → [𝛽*]
val even : ∀𝛾 .(int → bool) ∧ ((𝛾 \ int) → (𝛾 \ int))

Here, the map function has its familiar type, with the twist that list types are regular expression types.
These are merely syntactic sugar for recursive types. For instance, the type [𝛼*] is the recursive
type defined by the equation 𝑋 = nil ∨ 𝛼 ×𝑋 , which is a union of nil — the singleton type of the

constant representing the empty list — and a product type of the type variable 𝛼 (the polymorphic

type of the head of the list) and 𝑋 standing for the list type itself (the tail of the list). The even

function is an intersection of two arrow types, meaning that even is an overloaded function. When

this function is applied to a value of type int, it returns a value of type bool. Otherwise, when
applied to values that are not integers, captured by the set difference 𝛾 \ int, it returns a value of
that type

1
. Now, let’s imagine what would be needed to type the (partial) application map even. In

a Hindley-Milner style type system, we would need to:

(1) find a type substitution which unifies the type of the domain of map with the type of even

(2) apply this substitution to the codomain of map ([𝛼*] → [𝛽*]) to deduce the type of the

whole expression.

However, in the context of set-theoretic types, syntactic unification is not powerful enough. Indeed,

it would fail here, since it confronts an arrow type (𝛼 → 𝛽) against an intersection type (the

type of even). One of the key feature of set-theoretic types is the associated notion of semantic
subtyping. With this notion, the behavior of set-theoretic connectives w.r.t. type constructors (e.g.

idempotence, distributivity) is derived from set theory. To reconcile parametric polymorphism

and subtyping-based polymorphism, [13] introduces the tallying operation. In a nutshell, tallying

consists in finding type substitutions for type variables that make a set of type inequations hold.

Thus, typing the application map even consists in finding type substitutions such that

(𝛼 → 𝛽) → [𝛼*] → [𝛽*] ≤ ((int → bool) ∧ ((𝛾 \ int) → (𝛾 \ int))) → 𝛿

where ≤ denotes subtyping and 𝛿 is a freshly introduced type variable that represents the type we

are interested in, that is, the type of map even. This single problem contains the constraints that:

• the type of even must be a subtype of 𝛼 → 𝛽 (contravariance on the domain of map)

• 𝛿 must be supertype of [𝛼*] → [𝛽*] (covariance on the codomain of map)

The result of this tallying problem is a set of four substitutions {𝜎1, 𝜎2, 𝜎3, 𝜎4}, and the type of the

application is therefore 𝛿𝜎1 ∧ 𝛿𝜎2 ∧ 𝛿𝜎3 ∧ 𝛿𝜎4, which becomes the type of the overloaded function:

([(int ∨ 𝛾1)*] → [(bool ∨ (𝛾1 \ int))*]) ∧ (nil → nil) ∧
([(𝛾3 \ int)*] → [(𝛾3 \ int)*]) ∧ ([int*] → [bool*])

This short example highlights most of the challenges one faces when trying to implement set-

theoretic types. While some of them are documented in the literature, we propose in this work a

systematic presentation of all the relevant aspects of the implementation of set-theoretic types,

together with novel implementation techniques and insights discovered while implementing the

SSTT library. Each technique is evaluated on a realistic use of set-theoretic types.

1
To implement such behavior, the underlying programming language supports a dynamic type case construct.
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The rest of the paper is structured as follows. In Section 2, we recall basic definitions about

set-theoretic types. Then, Section 3 introduces Binary Decision Trees (BDTs), a data-structure which
is used pervasively in the implementation of types presented in Section 4. The subtyping and

tallying algorithms are described in Section 5. Section 6 shows how several useful extensions

can be encoded in the base type algebra. Section 7 evaluates and compares our implementation

performance in different settings. Finally, Section 8 presents related and future work.

2 Set-theoretic types
2.1 Definitions
The types we implement in this paper are the set-theoretic types. For more detail, we refer the

reader to the survey paper [7] which synthesises the relevant results from the literature.

Definition 2.1 (Set-theoretic types). The set T of set-theoretic types is the set of regular and

contractive terms coinductively defined by the following grammar:

Types 𝑡 ::= 𝑏 | 𝛼 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∨ 𝑡 | 𝑡 ∧ 𝑡 | ¬𝑡 | 0 | 1

where 𝑏 ∈ B is a base type (in particular, it includes the constants 𝑐 ∈ C of the language we want

to type) and 𝛼 ∈ V is a type variable. The notation 𝑡1 \ 𝑡2 is a syntactic sugar for 𝑡1 ∧ ¬𝑡2. When

writing a term, we use the following precedence (by decreasing priority): ¬, \, ∧, ∨, ×, →.

As they are defined coinductively, types can be infinite trees, provided that they satisfy the

constraints of regularity and contractivity explained below to ensure decidability of the subtyping

relation. This yields a definition of equirecursive types that does not require explicit binders for

recursion. A term is said regular if it only has a finite number of distinct subterms, and contractive
if every infinite branch goes through an infinite number of arrows and products (→ and ×).
The type 0 is a special type that is not inhabited by any value, and is the subtype of all types.

Conversely, the type 1 is the supertype of all types. The × constructor is used to type pairs, and

the→ constructor is used to type functions. These are the most common type constructors, but

set-theoretic types can be extended with other constructors as we will see throughout this paper.

Set-theoretic types are equipped with a decidable subtyping relation ≤ (referred to as semantic
subtyping, cf. Appendix A for more details). For this presentation, it suffices to consider that each

type can be interpreted as a set of values that have that type, and that subtyping is set containment.

Type connectives (union, intersection, negation) are interpreted as the corresponding set-theoretic

operators. Although the interpretation of type variables is more complex, the following property is

sufficient to grasp the behavior of subtyping in presence of type variables:

Proposition 2.2 (Subtyping, [16]). Let 𝑡 and 𝑠 be two types. The type 𝑠 is a subtype of type 𝑡 if,
for every type substitution 𝜎 , we have 𝑠𝜎 ≤ 𝑡𝜎 .

We note ≃ the semantic equivalence: 𝑡1 ≃ 𝑡2 if and only if 𝑡1 ≤ 𝑡2 and 𝑡2 ≤ 𝑡1. Thanks to negation,

the subtyping problem is equivalent to checking the emptiness of a type: 𝑠 ≤ 𝑡 ⇐⇒ 𝑠 \ 𝑡 ≤ 0.
As presented in the introduction, subtyping is a building block for the definition of tallying:

Definition 2.3 (Tallying, [13]). Let 𝑆 = {(𝑠1, 𝑡1), . . . , (𝑠𝑛, 𝑡𝑛)} be a finite set of pairs of types and Δ
a set of type variables. The solution of the tallying problem for 𝑆 and Δ is:

tally(𝑆,Δ) = {𝜎 | dom(𝜎) ∩ Δ = ∅ ∧ ∀(𝑠, 𝑡) ∈ 𝑆. 𝑠𝜎 ≤ 𝑡𝜎}

The set 𝑆 contains the subtyping constraints, and the set Δ is the set of variables that the tallying

is not allowed to instantiate. An important property of the tallying operation is that it is complete:

it computes a finite set of substitutions which exactly characterize all the possible solutions.
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2.2 Types in disjunctive normal forms
As hinted to in the previous section, deciding subtyping is equivalent to checking the emptiness of

a type. A convenient way to express the subtyping algorithm is to put the type in disjunctive normal
form (DNF). Given a type 𝑡 , its DNF as defined in [16] is a syntactic term of the following form:

DNF(𝑡) =

∨ ∧
𝑖 𝛼

b
𝑖 ∧ ∧

𝑗 ¬𝛽b𝑗 ∧ ∧
𝑘 𝑏𝑘 ∧ ∧

𝑙 ¬𝑏𝑙
∨ ∨ ∧

𝑖 𝛼
p
𝑖
∧ ∧

𝑗 ¬𝛽
p
𝑗
∧ ∧

𝑘 (𝑡1

𝑘
× 𝑡2

𝑘
) ∧ ∧

𝑙 ¬(𝑠1

𝑙
× 𝑠2

𝑙
)

∨ ∨ ∧
𝑖 𝛼

a
𝑖 ∧ ∧

𝑗 ¬𝛽a𝑗 ∧ ∧
𝑘 (𝑡1

𝑘
→ 𝑡2

𝑘
) ∧ ∧

𝑙 ¬(𝑠1

𝑙
→ 𝑠2

𝑙
)

(*)

In this formula, each row is itself a DNF of positive and negative type variables and positive and

negative instances of a particular type constructor: a basic type (we assume for now a single kind of

basic type), a product, or an arrow. The subtyping algorithm can then iterate through the elements

of this DNF to test the emptiness of the type. Notice that as usual, the DNF of a type may be

exponential in the size of the original type expression. The complexity of subtyping is therefore in

EXPTIME (which was shown by [20] or, alternatively, can be shown by reducing the problem to

testing the inclusion of regular tree languages given by non-deterministic tree automata). Keeping

types explicitly as DNF would be particularly impractical, we therefore need to devise a generic

data-structure to represent DNF compactly.

3 Binary Decision Trees
In this section, we describe Binary Decision Trees (BDTs), a data structure for representing Boolean

combinations (union, intersection, and negation) of atoms. The nature of these atoms is varied,

as shown in the previous section. They can be type variables, basic types, or type constructors.

We develop the meta-theory of BDT and operations by abstracting over atoms. In addition to the

standard Boolean operations on BDTs (Section 3.2), we define a semantic simplification operation

(Section 3.3).

3.1 Structure of a BDT
Let A be a set of atoms, ranged over by 𝑎. We assume we have a total order ⪯ over atoms, as

well as an interpretation J𝑎K of an atom 𝑎 as a type. Let L be a set of leaves, ranged over by 𝑙 .

We assume we have an interpretation J𝑙K of a leaf 𝑙 as a type, a bottom leaf element ⊥ whose

interpretation J⊥K is the type 0, and a top leaf element ⊤ whose interpretation J⊤K is the type 1. In
addition, the set-theoretic operations ∧, ∨, and ¬ must be defined on leaves, in accordance with

the interpretation J.K (J𝑙1 ∧ 𝑙2K ≃ J𝑙1K ∧ J𝑙2K, J𝑙1 ∨ 𝑙2K ≃ J𝑙1K ∨ J𝑙2K, J¬𝑙K ≃ ¬J𝑙K).

Definition 3.1. The set of Binary Decision Trees BDT(A,L) over atoms A and leaves L are the

finite trees produced by the following grammar (where 𝑙 ∈ L and 𝑎 ∈ A):

(Ordered) Binary Decision Trees 𝐵 ::= L(𝑙) | N(𝑎?𝐵:𝐵)
with the property that for any non-root node labeled 𝑎 whose parent is labeled 𝑎′, we have 𝑎 ̸⪯ 𝑎′.

For concision, we use the notation ⊥ for L(⊥), ⊤ for L(⊤), and N(𝑎) for the BDT node N(𝑎?⊤:⊥).
The auxiliary definitions below allow us to extract the set of atoms or the set of leaves of a BDT:

Definition 3.2. For any BDT 𝐵, we define leaves(𝐵) and atoms(𝐵) as follows:
leaves(L(𝑙)) = {𝑙} leaves(N(𝑎?𝐵+:𝐵−)) = leaves(𝐵+) ∪ leaves(𝐵−)
atoms(L(𝑙)) = ∅ atoms(N(𝑎?𝐵+:𝐵−)) = atoms(𝐵+) ∪ atoms(𝐵−) ∪ {𝑎}

The meaning of a BDT, that is, the type that it represents, is given by the way of an interpretation

function from BDTs to types.
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Definition 3.3. The interpretation J𝐵K of a binary decision tree 𝐵 is inductively defined as follows:

JL(𝑙)K = J𝑙K JN(𝑎?𝐵+:𝐵−)K = (J𝑎K ∧ J𝐵+K) ∨ (¬J𝑎K ∧ J𝐵−K)

Note that the interpretation of a BDT 𝐵 is a Boolean combination of atoms and leaves. An example

of a BDT and the associated interpretation can be found in Figure 1. This Boolean combination can

be expressed as a DNF (cf. Section 2.2):

Definition 3.4. The DNF dnf (𝐵) of a BDT 𝐵 is a set of triples (𝐴𝑝 , 𝐴𝑛, 𝑙), where each triple

represents a clause intersecting the positive atoms 𝐴𝑝 , the negative atoms 𝐴𝑛 , and the leaf 𝑙 :

dnf (L(𝑙)) = {(∅,∅, 𝑙)}
dnf (N(𝑎?𝐵+:𝐵−)) = {(𝐴𝑝 ∪ {𝑎}, 𝐴𝑛, 𝑙) | (𝐴𝑝 , 𝐴𝑛, 𝑙) ∈ dnf (𝐵+)} ∪

{(𝐴𝑝 , 𝐴𝑛 ∪ {𝑎}, 𝑙) | (𝐴𝑝 , 𝐴𝑛, 𝑙) ∈ dnf (𝐵−)}

To ensure a BDT does not represent a trivially empty type, we define the following property:

Definition 3.5 (Reduced BDT). We say that a BDT is reduced, if and only if all non leaf subtrees of

the BDT are of the form N(𝑎?𝐵+:𝐵−) with 𝐵+ ≠ 𝐵−
(where ≠ denotes syntactic inequality).

Note that it is always possible to create BDTs that are reduced. To do so, we assume that N(_?_:_)
behaves as a smart constructor which performs the following simplification: N(𝑎?𝐵:𝐵) { 𝐵.

Henceforth, we assume all BDTs to be reduced.

𝑎1

𝑎2

𝑎3

⊥ ⊤

⊤

𝑎3

⊥ ⊤

Fig. 1. BDT whose interpretation is
J𝑎1K ∧ (J𝑎2K ∧ ¬J𝑎3K ∨ ¬J𝑎2K) ∨ ¬J𝑎1K ∧ ¬J𝑎3K

The knowledgeable reader may recognize

our BDTs as variants of Reduced Ordered Bi-

nary Decision Diagrams (ROBDD) [3]. There

are however two key distinctions between the

two formalisms. The first one is that for BDTs,

leaf nodes may be arbitrary elements of a lattice

(that can be mapped to the lattice of types). The

second one is that we do not require BDTs to

be DAGs, that is, we do not enforce that struc-

turally equal subtrees are shared in memory.

While it is possible to enforce this property (e.g.

by performing hash-consing at construction

time), it has two drawbacks. The first one is

that, in typical use, it is seldom the case that

identical (and sufficiently large) subtrees are built to offset the cost of hash-consing. The second

is that in our setting, we may have semantically equivalent subtrees which are not syntactically

equivalent and thus will not be compacted by hash-consing. We set these considerations aside for

now, and will revisit them in Section 7.

3.2 Set-theoretic operations
Implementing set-theoretic operations on BDTs is straightforward. For negation, it suffices to

recursively traverse the BDT and negate the leaves:

Definition 3.6. The negation of a BDT can be computed by negating its leaves:

¬L(𝑙) = L(¬𝑙) ¬N(𝑎?𝐵+:𝐵−) = N(𝑎?¬𝐵+:¬𝐵−)

For binary set-theoretic operations, their definitions can be given in a generic way by propagating

the operations down the leaves, following the ⪯ order over atoms.
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Definition 3.7. Let ⊛ ∈ {∧,∨, \} be a binary set-theoretic operation. Let 𝐵1 and 𝐵2 be two BDTs.

𝐵1 ⊛ 𝐵2 can be computed inductively as follows:

L(𝑙1) ⊛ L(𝑙2) = L(𝑙1 ⊛ 𝑙2)
N(𝑎?𝐵+:𝐵−) ⊛ L(𝑙) = N(𝑎?𝐵+ ⊛ L(𝑙):𝐵− ⊛ L(𝑙))
L(𝑙) ⊛ N(𝑎?𝐵+:𝐵−) = N(𝑎?L(𝑙) ⊛ 𝐵+:L(𝑙) ⊛ 𝐵−)

N(𝑎1?𝐵
+
1
:𝐵−

1
) ⊛ N(𝑎2?𝐵

+
2
:𝐵−

2
) =


N(𝑎1?𝐵

+
1
⊛ 𝐵+

2
:𝐵−

1
⊛ 𝐵−

2
) if 𝑎1 = 𝑎2

N(𝑎1?𝐵
+
1
⊛ N(𝑎2?𝐵

+
2
:𝐵−

2
):𝐵−

1
⊛ N(𝑎2?𝐵

+
2
:𝐵−

2
)) if 𝑎1 ⪯ 𝑎2

N(𝑎2?N(𝑎1?𝐵
+
1
:𝐵−

1
) ⊛ 𝐵+

2
:N(𝑎1?𝐵

+
1
:𝐵−

1
) ⊛ 𝐵−

2
) if 𝑎2 ⪯ 𝑎1

Finally, we define a map operation on BDTs (it will be used later to implement type substitutions).

Definition 3.8. Let 𝑓 : A ∪ L → BDT(A,L) be a function from atoms and leaves to BDTs. We

define the extension
¯𝑓 : BDT(A,L) → BDT(A,L) of 𝑓 inductively, as follows:

¯𝑓 (L(𝑙)) = 𝑓 (𝑙) ¯𝑓 (N(𝑎?𝐵+:𝐵−)) = (𝑓 (𝑎) ∧ ¯𝑓 (𝐵+)) ∨ (¬𝑓 (𝑎) ∧ ¯𝑓 (𝐵−))

3.3 Semantic simplification
Unlike BDDs traditionally used for representing Boolean formulas whose atoms are propositional

variables, our BDTs may have more complex atoms (e.g. arrows, products). Two atoms may be

semantically equivalent without being syntactically equivalent, or more generally, they may be

correlated by the subtyping relation. These subtyping relations between the atoms is not captured

by the total order ⪯ we use for ordering the nodes of our BDTs, as this total order is purely syntactic.

Hence, we define a simplification operation that removes nodes that are (semantically) redundant

from a BDT. Note that this simplification operation does not try to reorder nodes or to change the

atom they are labeled with. As such, it does not guarantee minimality of the resulting BDT, as a

smaller semantically equivalent BDT that uses different atoms or a different order may exist.

We define our BDT semantic simplification operation inductively as follows:

simpl(𝑡, L(𝑙)) = L(𝑙) simpl(𝑡, N(𝑎?𝐵+:𝐵−)) =


𝐵+′

if 𝑡 ∧ J𝐵+′K ≃ 𝑡 ∧ J𝐵′K
𝐵−′

if 𝑡 ∧ J𝐵−′K ≃ 𝑡 ∧ J𝐵′K
𝐵′

otherwise

where 𝐵+′ = simpl(𝑡 ∧ 𝑎, 𝐵+), 𝐵−′ = simpl(𝑡 ∧ ¬𝑎, 𝐵−), and 𝐵′ = N(𝑎?𝐵+′:𝐵−′).
The simplified form simpl(𝐵) of a BDT 𝐵 is then defined as simpl(𝐵) = simpl(1, 𝐵).

In essence, the type 𝑡 in simpl(𝑡, 𝐵) represents the context of 𝐵, that is, the conjunction of positive

and negative atoms traversed from the root to 𝐵. For each node 𝐵 = N(𝑎?𝐵+:𝐵−), if we note 𝑡 its
context, the simplification procedure tests whether 𝑡 ∧ J𝐵K ≃ 𝑡 ∧ J𝐵+K. If that is the case, it means

that the atom and right subtree are redundant and that 𝐵 can be replaced by (the simplified version

of) 𝐵+
. Otherwise, the same test is done for 𝑡 ∧ J𝐵K ≃ 𝑡 ∧ J𝐵−K, which allows one to replace 𝐵 by

(the simplified version of) its right subtree. If both tests failed, the node is kept and its subtrees are

recursively simplified.

Note that simplifying a BDT may be expensive as it requires deciding several semantic equiva-

lences, each encoded as two subtyping tests. The simplification procedure is correct:

Proposition 3.9 (Correctness). For any BDT 𝐵, we have Jsimpl(𝐵)K ≃ J𝐵K.

More interestingly, while the simplification procedure does not ensure minimality, it enjoys two

desirable properties. First, the negation of a simplified type is itself simplified:

Proposition 3.10. For any BDT 𝐵, we have ¬simpl(𝐵) = simpl(¬𝐵) (where = is syntactic equality).
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Second, the simplification is sufficient to always reduce the empty type to the trivial BDT:

Proposition 3.11. For any BDT 𝐵, we have J𝐵K ≃ 0 ⇔ simpl(𝐵) = ⊥.

This guarantees that, if a BDT is simplified, then checking its semantic emptiness is equivalent

to checking its syntactic emptiness. Both Propositions 3.10 and 3.11 will be exploited by our

representation of set-theoretic types to improve performance (cf. Section 4.8).

4 Internal representation of types
In this section, we propose a structure to represent set-theoretic types using BDTs (cf. Section 3).

This structure allows building types using different operations:

• type constructors and set-theoretic connectives (∧, ∨, ¬),
• application of a type substitution {𝛼𝑖 { 𝑡𝑖 }𝑖∈𝐼 on a type 𝑡 ,

• construction of recursive types from a set of equations {𝛼𝑖 = 𝑡𝑖 }𝑖∈𝐼 .
For simplicity, we only consider the constant, arrow, and product type constructors. Our structure

is modular, so adding other type constructors is straightforward and will be discussed in Section 6.

4.1 Overall structure
Set-theoretic types are defined coinductively and, thus, may be infinite trees. However, the regularity

property ensures that the number of distinct subtrees is finite: we can thus represent a type as

a graph that may contain cycles. We build this graph such that each subtree whose parent is a

type constructor (× or →) is represented by a node. A node thus defines the top-level structure

of a subtree (i.e. the Boolean combination of constructors and type variables composing it), and

references other nodes in the graph to describe the subtrees appearing inside a type constructor.

The contractivity property of types ensures no such node definition consists in an infinite union or

intersection. This graph structure is illustrated in Figure 2.

𝑁1 : (𝑁2 × 𝑁1) ∨ nil

𝑁2 : 𝛼 ∧ (𝑁3 → 𝑁4)

𝑁3 : int 𝑁4 : bool

Fig. 2. Graph for the type
𝜇𝑋 . ((𝛼 ∧ (int → bool)) × 𝑋 ) ∨ nil

Node 𝑁
represents a set-theoretic type (identifier, definition 𝑉 )

Polymorphic descriptor 𝑉
combines monomorphic descriptors with type variables (∨ ∧ ¬ 𝛼 𝐷)

Monomorphic descriptor 𝐷
represents a disjoint union of components (𝐴 ∨𝐶 ∨ 𝑃 )

Arrow component
∨ ∧ ¬ (𝑁 → 𝑁 )

Const. component
∨ ∧ ¬ 𝑐

Prod. component
∨ ∧ ¬ (𝑁 × 𝑁 )

Arrow atom
𝑁 → 𝑁

Constant atom
𝑐

Product atom
𝑁 × 𝑁

r
e
f
e
r
e
n
c
e
s

r
e
f
e
r
e
n
c
e
s

Fig. 3. Structure of a node (lower layers are used by upper layers)

Figure 3 illustrates the internal structure of each node of the graph. Each node can be decomposed

into several layers. At the bottom, we have the different kinds of atoms (i.e. type constructors):
products×, arrows→, and constants. Atoms of each kind are used inside components that represent a
Boolean combination of atoms. Those different kinds of components are all disjoint (products, arrows

and constants have disjoint interpretations): their disjoint union is represented by a monomorphic
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descriptor. Finally, a polymorphic descriptor expresses a Boolean combination of type variables and

monomorphic descriptors.

In the following, nodes are ranged over by 𝑁 . We assume we have a total order ⪯ on nodes (it

can be any total order, unrelated to the subtyping relation over types).

Definition 4.1. A node substitution 𝜌 is a function from nodes to nodes which is the identity

everywhere except for a finite set of nodes, called its domain and denoted by dom(𝜌).

4.2 Atoms
An atom 𝑎 represents an instance of a type constructor. For an atom 𝑎 of any kind (constant, product,

arrow), we define deps(𝑎) and the application 𝑎𝜌 of a node substitution 𝜌 to 𝑎.

Arrow. An arrow atom is a pair (𝑁1, 𝑁2), written 𝑁1 → 𝑁2 for clarity. Intuitively, it represents

the type 𝑡1 → 𝑡2 where 𝑡1 (resp. 𝑡2) is the type associated with 𝑁1 (resp. 𝑁2).

deps(𝑁1 → 𝑁2) = {𝑁1, 𝑁2} (𝑁1 → 𝑁2)𝜌 = 𝜌 (𝑁1) → 𝜌 (𝑁2)

Product. A product atom is a pair (𝑁1, 𝑁2), written 𝑁1 × 𝑁2 for clarity. Intuitively, it represents

the type 𝑡1 × 𝑡2 where 𝑡1 (resp. 𝑡2) is the type associated with 𝑁1 (resp. 𝑁2).

deps(𝑁1 × 𝑁2) = {𝑁1, 𝑁2} (𝑁1 × 𝑁2)𝜌 = 𝜌 (𝑁1) × 𝜌 (𝑁2)

Constant. A constant atom is a label 𝑐 ∈ C (e.g. true, false, nil).

deps(𝑐) = ∅ 𝑐𝜌 = 𝑐

We also extend the total order ⪯ over atoms (we can use the lexicographic order for arrows and

products, and an arbitrary order over constants).

4.3 Components
A component represents a Boolean combination of atoms of a given kind. For simplicity, all kinds

of components will be represented using BDTs. In practice, though, simple components can be

represented using a more efficient, tailored representation (e.g. finite/cofinite sets for constants).

Definition 4.2. The BDTs we use for components use Boolean leaves, defined as follows:

Boolean Leaves 𝑏 ::= ⊥ | ⊤

We define the interpretation of a Boolean leaf as follows: J⊥K = 0, J⊤K = 1. Set-theoretic operations
(∧, ∨, ¬) on Boolean leaves are defined accordingly.

Definition 4.3. A component 𝐶 is a BDT whose leaves are Boolean leaves, and whose atoms are

one kind of atoms defined above (arrows, products, constants).

Components inherit the operations defined on BDTs (cf. Section 3): ∧, ∨, ¬, atoms(𝐶), J𝐶K,
dnf (𝐶). For each component 𝐶 and node substitution 𝜌 , we define deps(𝐶) and 𝐶𝜌 as follows:

deps(𝐶) =
⋃

𝑎∈atoms(𝐶 ) deps(𝑎) 𝐶𝜌 = ¯𝑓 (𝐶)

where
¯𝑓 is the extension on BDTs (cf. Definition 3.8) of the following function 𝑓 :

𝑓 (𝑏) = L(𝑏) 𝑓 (𝑎) = N(𝑎𝜌)

We also extend the total order ⪯ over components (we can choose any syntactic total order over

the structure of the underlying BDT).
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4.4 Monomorphic descriptors
A monomorphic descriptor 𝐷 represents a disjoint union of components.

Definition 4.4. A monomorphic descriptor is a record {const; prod; arrow}, where const is a

component for constants, prod is a component for products, and arrow is a component for arrows.

As these components have disjoint interpretations, all the set-theoretic operations (¬, ∨, ∧) as
well as node substitutions can be performed component-wise. The set of dependencies deps(𝐷) of
a descriptor 𝐷 is the union of the dependencies of its components. We extend the total order ⪯
over monomorphic descriptors (we can use the lexicographic order over the different components).

4.5 Polymorphic descriptors
Definition 4.5. A polymorphic descriptor 𝑉 is a BDT whose leaves are monomorphic descriptors,

and whose atoms are type variables (we fix an arbitrary total order ⪯ over type variables).

Polymorphic descriptors inherit the operations defined on BDTs (cf. Section 3): ∧, ∨, ¬, atoms(𝑉 ),
leaves(𝑉 ), J𝑉 K, dnf (𝐶). We define deps(𝑉 ) and 𝑉 𝜌 (where 𝜌 is a node substitution) as follows:

deps(𝑉 ) =
⋃

𝐷∈leaves(𝑉 ) deps(𝐷) 𝑉 𝜌 = ¯𝑓 (𝑉 )
where

¯𝑓 is the extension on BDTs (cf. Definition 3.8) of the following function 𝑓 :

𝑓 (𝐷) = L(𝐷𝜌) 𝑓 (𝛼) = N(𝛼)

Definition 4.6. A definition mapping 𝜎 is a mapping from type variables to polymorphic descrip-

tors. Its domain is denoted by dom(𝜎).

The application of a mapping 𝜎 on a polymorphic descriptor 𝑉 is defined as 𝑉𝜎 = ¯𝑓 (𝑉 ), where
¯𝑓 is the extension on BDTs (cf. Definition 3.8) of the following function 𝑓 :

𝑓 (𝐷) = L(𝐷) 𝑓 (𝛼) =

{
𝜎 (𝛼) if 𝛼 ∈ dom(𝜎)
N(𝛼) otherwise

We extend the total order ⪯ over polymorphic descriptors (we can choose any syntactic total

order over the structure of the underlying BDT).

4.6 Nodes
Definition 4.7. A node is represented by a record {id; def} where id is a unique identifier (e.g. an

integer), and def is a polymorphic descriptor.

The total order ⪯ on nodes only depends on their id field. We write node(𝑑) to denote a node
with the definition 𝑑 and a fresh identifier. Set-theoretic operations on nodes are defined as follows:

¬𝑁 = node(¬(𝑁 .def)) 𝑁1 ∧ 𝑁2 = node(𝑁1 .def ∧ 𝑁2 .def) 𝑁1 ∨ 𝑁2 = node(𝑁1.def ∨ 𝑁2.def)
The set of top-level type variables of a node 𝑁 is defined as top_vars(𝑁 ) = atoms(𝑁 .def).

The set of dependencies of a node 𝑁 , deps(𝑁 ), is the smallest set of nodes 𝑆 such that 𝑁 ∈ 𝑆 ,

and ∀𝑁 ′ ∈ 𝑆. deps(𝑁 ′ .def) ⊆ 𝑆 . The set of type variables of a node 𝑁 is defined as vars(𝑁 ) =⋃
𝑁 ′∈deps(𝑁 ) top_vars(𝑁 ′).

Definition 4.8. A type substitution 𝜙 is a function from type variables to nodes which is the

identity everywhere except for a finite set of type variables, denoted by dom(𝜙).

The application 𝑁𝜙 of a type substitution 𝜙 on a node 𝑁 is the node 𝜌 (𝑁 ) where:
• 𝜌 is a node substitution {𝑁𝑖 { 𝑁 ′

𝑖 }𝑖∈𝐼 where {𝑁𝑖 }𝑖∈𝐼 = deps(𝑁 ), and
• for every 𝑖 ∈ 𝐼 , 𝑁 ′

𝑖 = node(((𝑁𝑖 .def)𝜌)𝜎), and
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• 𝜎 is the definition mapping {𝛼 { 𝜙 (𝛼).def}𝛼∈dom(𝜙 )

Intuitively, the connected component of the node is copied (𝜌 associates each node to its copy), and

the definition mapping 𝜎 is applied to the definition each copied node.

Note that this definition is recursive: the definition of the node 𝑁 ′
𝑖 depends on 𝜌 , which itself

involves 𝑁 ′
𝑖 . In SSTT, the field 𝑁 .def is mutable, making it possible to generate a fresh node and

only set its definition later (it also allows us to simplify the definition of a node after it is created,

as it will be discussed in Section 4.8). Alternatively, these equations can be implemented by storing

node definitions in a separate data structure (for instance a dictionary mapping node identifiers to

their definitions), or in a lazy language (e.g. Haskell) using recursive definitions.

4.7 Construction of recursive types
Nodes can be constructed from atoms and combined using set-theoretic operations. However, we do

not have a way to construct recursive types yet. We propose here a method for building a recursive

type from a set of equations.

Let 𝑁 be a node and 𝐸 be a set of equations, each equation being a pair (𝛼, 𝑁𝛼 ) corresponding to
the equation 𝛼 = 𝑁𝛼 . Let 𝑆 =

⋃
(𝛼,𝑁𝛼 ) ∈𝐸 deps(𝑁𝛼 ). Using a topological sort algorithm, we order 𝑆

into an ordered set {𝑁𝑖 }𝑖∈1. .𝑛 such that ∀𝑖 ∈ 1 . . 𝑛. ∀𝛼 ∈ top_vars(𝑁𝑖 ). ∀𝑗 ∈ 𝑖 . . 𝑛. (𝛼, 𝑁 𝑗 ) ∉ 𝐸.

In other words, our order must guarantee that for every binding (𝛼, 𝑁𝛼 ) of our set of equations
𝐸, 𝑁𝛼 is smaller than all the nodes that depend on 𝛼 at top-level. If no such ordering exist, then it

means that the set of equations is not contractive (it contains dependency cycles that do not pass

under a type constructor): there may be no solution or infinitely many solutions that satisfy the set

of equations, and thus we reject it.

Otherwise, for every 𝑖 ∈ 1 . . 𝑛, we define a node 𝑁 ′
𝑖 = node(((𝑁𝑖 .def)𝜌)𝜎𝑖 ), where:

• 𝜌 is the node substitution {𝑁 𝑗 { 𝑁 ′
𝑗 } 𝑗∈1. .𝑛 , and

• 𝜎𝑖 is the definition mapping {𝛼 { 𝑁 ′
𝑗 .def | 𝑗 ∈ 1 . . (𝑖 − 1), 𝛼 ∈ V s.t. (𝛼, 𝑁 𝑗 ) ∈ 𝐸}

As for type substitutions, this definition is recursive and should be implemented using similar

techniques. The function build(𝑁, 𝐸) returns a node 𝑁𝜙 where 𝜙 = {𝛼 { 𝑁 ′
𝑖 | (𝛼, 𝑁𝑖 ) ∈ 𝐸}. If 𝐸 is

not contractive, build(𝑁, 𝐸) is not defined.

4.8 Node simplification
Depending on how they are constructed, our nodes may contain redundant atoms in their internal

representation. For instance, consider the following sequence of operations: (𝑖) the type bool →
bool is constructed, (𝑖𝑖) it is intersected with true → false, and (𝑖𝑖𝑖) it is intersected with

false → true. The type we obtain is semantically equivalent to (true → false) ∧ (false →
true), but its internal representation will still contain the atom bool → bool. Redundancy can

also accumulate after applying multiple successive substitutions on a type, which typically happens

when implementing a type inference algorithm based on tallying such as [11].

The BDT simplification procedure simpl(.) defined in Section 3.3 can be used to avoid the

accumulation of redundant atoms. In SSTT, we implemented a systematic simplification of types:

a node is automatically simplified after being constructed by a ∧, ∨, a substitution, or a build
operation. According to Proposition 3.10, a type does not need to be simplified again after a ¬
operation. Keeping node definitions in a simplified form allows us to decide emptiness just by

checking if the definition of the node is syntactically the empty BDT (cf. Proposition 3.11). This

means that, though the subtyping algorithm (Section 5) is used to simplify the definition of a

node initially, subsequent emptiness checks are constant time. The time overhead induced by a

systematic simplification of types is measured and discussed in Section 7.
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5 Type operations
In the rest of this paper, we assimilate a type 𝑡 with a node 𝑁 that represents it. Set-theoretic

operations and substitutions on types correspond to the associated operations on nodes.

5.1 Subtyping
As already explained, the subtyping algorithm is really an emptiness test. Following [16], to test a

type 𝑡 for emptiness one only has to:

• Compute DNF(𝑡) as in equation (*)

• Disregard the top-level variables 𝛼
{b,p,a}
𝑖

and 𝛽
{b,p,a}
𝑗

• Test that all combinations of basic types, product types and arrow types are empty

The reason for the second condition is that, since the type must be empty for all possible substitu-
tions, in particular for those mapping positive variables to 1 and negative variables to 0. We detail

a first version of the emptiness test in Algorithm 1.

Algorithm 1 (Subtyping, non-optimized).

1 let rec is_empty 𝑁 Σ =
2 if 𝑁 ∈ Σ then true
3 else
4 let Σ′ = Σ ∪ {𝑁 } in
5 let 𝑉 = 𝑁 .def in
6 ∀𝐷 ∈ leaves(𝑉 ),
7 is_empty_const 𝐷.const Σ′ ∧
8 is_empty_prod 𝐷.prod Σ′ ∧
9 is_empty_arrow 𝐷.arrow Σ′

In this code
2
, 𝑁 is the node of the type we

are testing and Σ is a set of nodes. Each layer

(in the sense of Figure 3) handles a particular

aspect of the emptiness test. Recursive types

are handled at the level of nodes, by remem-

bering which node has already been visited. If

a node is encountered during its own traver-

sal, we return that it is empty, since a recursive

type whose emptiness depends only on itself,

e.g. 𝜇𝑋 .(1, 𝑋 )3, is empty. The first time a node

is visited, it is recorded (l. 4), and its polymor-

phic descriptor𝑉 (a BDT whose atoms are type

variables) is inspected. At that point, it is suffi-

cient to inspect all the monomorphic descriptors at the leaves of the BDT. Each such descriptor 𝐷

is a disjoint union of BDTs of constants, products, and arrows, for which the emptiness test may

call is_empty again on nested nodes.

Constant component. Since constants are disjoint one from the other, testing the emptiness of a

BDT of constants is done in constant time, by checking if it is structurally equal to the leaf ⊥.

Product component. Testing the emptiness of products is done by the is_empty_prod function:

let is_empty_prod 𝑝 Σ = ∀ ({𝑃𝑖
1
× 𝑃𝑖

2
}𝑖∈𝐼 , 𝐴𝑛,⊤) ∈ dnf (𝑝). Ψprod (

∧
𝑖∈𝐼 𝑃

𝑖
1
×∧

𝑖∈𝐼 𝑃
𝑖
2
, 𝐴𝑛, Σ)

This function enumerates each conjunction of the DNF of 𝑝 whose leaf node is ⊤. For each one, the

positive part of the intersection is transformed into a single product, by pushing the intersection

below the product constructor. It then remains to test whether the negative part of the intersection

is enough to negate this single product, which is tested by the Ψprod function:

Ψprod (𝑃1 × 𝑃2,∅, Σ) = (is_empty 𝑃1 Σ) ∨ (is_empty 𝑃2 Σ)
Ψprod (𝑃1 × 𝑃2, {𝑁1 × 𝑁2} ∪ 𝑆, Σ) = (is_empty 𝑃1 Σ) ∨ (is_empty 𝑃2 Σ) ∨

( Ψprod ((𝑃1 \ 𝑁1) × 𝑃2, 𝑆, Σ) ∧ Ψprod (𝑃1 × (𝑃2 \ 𝑁2), 𝑆, Σ))
Note that in the worst case, the Ψprod function may perform an exponential number of calls to

is_empty, each Boolean connective introducing a potential backtracking point. Crucially, even

2
We use an OCaml like syntax to present algorithm.

3
The model of semantic subtyping only allows for finite values.
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though new types are generated (e.g. when pushing the intersection below the products or when

computing type differences), only a finite number of such new types are created (see [18], [20])

which ensures the termination of the algorithm (the number of all nodes collected in Σ is finite).

Arrow component. Testing the emptiness of arrows works similarly to the case of products. The

only difference is that intersection and arrow constructors do not commute, and that a positive

intersection of arrows is never empty. We can apply these principles to test emptiness as follows.

let is_empty_arrow 𝑎 Σ = ∀ (𝐴𝑝 , 𝐴𝑛,⊤) ∈ dnf (𝑎). ∃ (𝑁1 → 𝑁2) ∈ 𝐴𝑛 . Ψarrow (𝑁1,¬𝑁2, 𝐴𝑝 , Σ)
For an intersection of positive arrows 𝐴𝑝 and negative arrows 𝐴𝑛 , there must be a single negative

arrow 𝑁1 → 𝑁2, which negates the whole positive intersection. For that to be true, it suffices that

at least one arrow in 𝐴𝑝 is completely negated by the selected negative arrow (which makes the

positive intersection empty). This is done by the auxiliary Ψarrow function defined as:

Ψarrow (𝑁1,𝑇2,∅, Σ) = (is_empty 𝑁1 Σ) ∨ (is_empty 𝑇2 Σ)
Ψarrow (𝑁1,𝑇2, {𝑃1 → 𝑃2} ∪𝐴𝑝 , Σ) = (is_empty 𝑁1 Σ) ∨ (is_empty 𝑇2 Σ) ∨

(Ψarrow ((𝑁1 \ 𝑃1),𝑇2, 𝐴𝑝 , Σ) ∧ Ψarrow (𝑁1, (𝑃2 ∧𝑇2), 𝐴𝑝 , Σ))
This function is similar to the one used for products, but takes a single negative arrow 𝑁1 → 𝑁2

and check that it is a super type of the positive part (and thus, that their difference is empty). Notice

that 𝑇2 is initially the negation of the co-domain 𝑁2.

Recursive types and caching. To explain how recursive types are handled, consider the example:

𝑋 = (𝑌 × 𝑌 ) 𝑌 = (nil × 𝑌 ) ∨ (𝑍 × 𝑍 ) ∨ (nil → nil) 𝑍 = 𝑌 × nil

where types are written as a set of recursive equations between nodes (and some basic types). If

one uses the algorithm of Figure 1 to test the emptiness of 𝑋 , the result is false. A relevant subset

of the recursive calls is the following:

1 is_empty 𝑋 ∅
2 is_empty_prod 𝑌 × 𝑌 {𝑋 }
3 is_empty 𝑌 {𝑋 }
4 is_empty_prod (nil × 𝑌 ) ∨ (𝑍 × 𝑍 ) {𝑋,𝑌 }
5 (is_empty_const nil {𝑋,𝑌 } { false

6 ∨ is_empty 𝑌 {𝑋,𝑌 } { true) (∗ recursive occurrence ∗)
7 ∧ is_empty_pair 𝑍 × 𝑍 {𝑋,𝑌, 𝑍 } { true (∗ depends on 𝑌 ∗)
8 ∧ is_empty_arrow (nil → nil) {𝑋,𝑌 } { false

9 ∨ is_empty 𝑌 {𝑋 }

To test the emptiness of 𝑋 , we must test its definition, since 𝑋 is not in Σ (l. 2). Its definition is the

product type 𝑌 × 𝑌 , which is empty if either projection is empty. Those are tested at l. 3 and l. 9.

This illustrates an inefficiency of the algorithm. The set Σ is used to handle recursion, and not as a

cache, which means that several occurrences of the same node may be traversed several times.

While it is tempting to replace sigma with a mutable map, one must take special care in doing so.

Indeed, in the above example, it would be recorded that:

• at first, 𝑌 is empty (initial recursive call, l. 3)

• during its traversal, 𝑍 (which depends on 𝑌 ) is found to be empty

• ultimately, 𝑌 contains nil → nil and therefore is not empty

It is not sufficient here to update Σ to record that 𝑌 is non-empty. One must also invalidate the
results stored for all nodes which used on the wrong initial assumption that 𝑌 was empty. This

improvement is described in Algorithm 2. The algorithm maintains three data-structures:
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Algorithm 2 (Subtyping, optimized).

1 let memo = H.create ()
2 let stack = ref []
3 let mem_stack = H.create ()
4 let rec is_empty 𝑁 =

5 if 𝑁 ∈ memo then begin
6 if 𝑁 ∈ mem_stack then
7 H.add mem_stack 𝑁

8 (!stack::H.find mem_stack 𝑁 );

9 H.find memo 𝑁

10 end else begin
11 stack := 𝑁 :: !stack;

12 H.add mem_stack 𝑁 [];

13 H.add memo 𝑁 true;

14 let 𝑉 = 𝑁 .def in
15 let b = ∀𝐷 ∈ leaves(𝑉 ),
16 is_empty_const 𝐷.const ∧
17 is_empty_prod 𝐷.prod ∧
18 is_empty_arrow 𝐷.arrow in
19 if not b then
20 invalidate 𝑁 memo mem_stack;

21 H.add memo 𝑁 b;

22 H.remove mem_stack 𝑁 ;

23 stack := List.tl !stack;

24 b end

• the hash table memo (l. 1)

• a reference to a persistent list, used as a stack

(stack, l. 2)

• a hash table mapping nodes to stacks

(mem_stack, l. 3)

While memo plays the same purpose as in the pre-

vious algorithm, the other two data-structures

are used to track dependencies between nodes.

Assuming a node 𝑁 is not in memo:

• push it on stack (l. 11)

• create an entry in mem_stack (l. 12)

• map it to true in memo as usual (l. 13)

We then explore the descriptor of the node re-

cursively. If a node 𝑁 is in memo, then:

• if an entry exists for 𝑁 in mem_stack, record

the current stack (l. 6–8)

• return the memoized value for 𝑁 (l. 9)

Lastly, after returning from a recursive call, if

the node turns out to be non-empty then:

• for each recorded stack for 𝑁 , remove

from memo any node 𝑋 appearing on that

stack, until 𝑁 is reached (done by function

invalidate, l. 20)

• update memo with the result for 𝑁 (l. 21)

• remove 𝑁 from mem_stack (l. 22) • pop 𝑁 from the stack (l. 23) • return the result (l. 24)

Whenever we encounter a node 𝑁 a second time during a recursive traversal, either:

• it is still in an “unknown” state (i.e. it has a binding in mem_stack), and every node that has been

put on the stack during its inspection depends on the (possibly wrong) assumption that it is

empty, we must remember them to remove them from memo later on;

• or it is in a definitive state (it has no binding in mem_stack), we can therefore return its emptiness

state from the memo table

5.2 Tallying
We revisit the tallying algorithm formalized by [13] which does not perform well in practice. At its

heart, the tallying algorithm recursively traverses a type 𝑡 and generates a set of sets of constraints

on the variables of 𝑡 which, when satisfied, make the type empty. For instance, for the “map even”

example given in the introduction, the tallying algorithm produces a set of four sets of constraints,

each yielding a type substitution. We first introduce normalized constraint sets.

Definition 5.1 (Normalized constraint set). A normalized constraint set 𝐶 is a set of triples

{(𝑠𝑖 , 𝛼𝑖 , 𝑡𝑖 )}𝑖∈𝐼 where all 𝛼𝑖 are distinct. The set {𝛼𝑖 }𝑖∈𝐼 is called the domain of 𝐶 and is written

dom(𝐶). The empty constraint set is noted ⊤. Lastly, we define the constraint associated with a

variable 𝛼 in a constraint 𝐶 by:

𝐶 (𝛼) = (𝑠, 𝑡) if 𝛼 ∈ dom(𝐶) 𝐶 (𝛼) = (0, 1) otherwise
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We now define operations on normalized constraint sets. These are parametrized by a set Δ of

type variables the tallying algorithm is allowed to instantiate.

Definition 5.2 (Intersection of normalized constraint sets). Let 𝐶1 and 𝐶2 be two normalized con-

straint sets and Δ a set of type variables. We define the intersection 𝐶1 ⊓Δ 𝐶2 as follows. Let

𝐶 = {(𝑠1 ∨ 𝑠2, 𝛼, 𝑡1 ∧ 𝑡2) | , (𝑠𝑖 , 𝛼, 𝑡𝑖 ) ∈ 𝐶𝑖 , for 𝑖 = 1..2}.
𝐶1 ⊓Δ 𝐶2 = 𝐶 if ∀(𝑠, 𝛼, 𝑡) ∈ 𝐶, vars(𝑠) ∪ vars(𝑡) ⊆ Δ ⇒ 𝑠 ≤ 𝑡

𝐶1 ⊓Δ 𝐶2 = • otherwise

Intuitively, the intersection of two constraint sets is only defined if it does not create a trivially

unsatisfiable constraint such as (int, 𝛼, bool), which can never be satisfied.

Definition 5.3 (Subsumption of constraint sets). Let 𝐶1 and 𝐶2 be two normalized constraint sets.

We say that 𝐶1 subsumes 𝐶2, written 𝐶1 ⊑ 𝐶2, if and only if:

∀(𝑠2, 𝛼, 𝑡2) ∈ 𝐶2, ∃(𝑠1, 𝛼, 𝑡1) ∈ 𝐶1, such that 𝑠2 ≤ 𝑠1 and 𝑡1 ≤ 𝑡2

In other words, a set of constraints 𝐶1 subsumes a set of constraints 𝐶2 if 𝐶1 gives better bounds

(higher lower bounds and lower upper bounds) for all variables of 𝐶2. We are now equipped to

define sets of normalized constraint sets. Sets of normalized constraint sets are ranged over by C .

Definition 5.4 (Simplification of sets of constraint sets). The simplification of a set C of constraint

sets, written csimp(C ), is defined as follows:

csimp(C ) = csimp′ (C ,∅)
csimp′ (∅,D) = D
csimp′ ({𝐶} ∪ C ,D) = csimp′ (C ,D) if ∃𝐶′ ∈ D,𝐶′ ⊑ 𝐶

csimp′ ({𝐶} ∪ C ,D) = csimp′ (C , {𝐶} ∪ D \ D ′) where D ′ = {𝐶′ | 𝐶′ ∈ D,𝐶 ⊑ 𝐶′}

Simplified sets of constraint sets ensures that their elements are pairwise non-subsumable,

each element denotes a different, incomparable substitution. Maintaining simplified sets is a key

ingredient to tame the complexity of the tallying operation.

Definition 5.5 (Union and intersection of sets of constraint sets). Given two sets of normalized

constraint sets C1 and C2 and a set of type variables Δ, we define their intersection and union as:

C1 ⊓Δ C2 = csimp({𝐶1 ⊓Δ 𝐶2 | 𝐶1 ∈ C1,𝐶2 ∈ C2,𝐶1 ⊓Δ 𝐶2 ≠ •}) (intersection)

C2 ⊔ C2 = csimp(C1 ∪ C2) (union)

Algorithm 3 (Tallying).

1 let tally Δ 𝑆 =

2 let C =
l

(𝑁1,𝑁2 ) ∈𝑆

Δ normalize Δ (𝑁1\𝑁2) in

3 let C ′=
⊔
𝐶∈C

propagate Δ ⊤ 𝐶 ∅ in

4 { solve 𝐶 | 𝐶 ∈ C ′}

We can now review the tallying algorithm, Algo-

rithm 3, which consists of three steps. The func-

tion normalize transforms a subtyping constraint

𝑁1 ≤ 𝑁2 into a set of normalized constraint sets

C . Like in the subtyping algorithm, the initial

subtyping constraint is encoded as an emptiness

constraint for the type 𝑁1 \ 𝑁2. Each normal-

ized constraint set is then processed through the

propagate function, which eliminates unsatisfi-

able constraint sets and recursively enriches sat-

isfiable ones with new induced constraints: for

every constraint (𝑠, 𝛼, 𝑡) produced by normalize,

if either 𝑠 or 𝑡 contains type variables that are not

in Δ, then 𝑠 ≤ 𝑡 may require new constraints. These new constraints are added by propagate to
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form a final set of constraints set C ′
. Each constraint set in C ′

can then be turned into a set of

recursive type equation and solved, yielding a substitution. The code of normalize and propagate

is given in Figure 4 (the code of solve is straightforward).

Normalize. The implementation of normalize Δ 𝑁 follows the same structure as the emptiness

test. It uses a hash table𝑀 to map already visited nodes to their set of constraint sets (l. 3). It plays

a similar role as Σ in the subtyping algorithm. Whenever the emptiness test (which computes a

Boolean) uses an “and” (resp. an “or”), the normalize function uses ⊓ (resp. ⊔). The first time a type

is visited (l. 5), the satisfiable constraint is added to the memoization table 𝑀 . Each conjunction

of the DNF of the type is then explored to generate individual sets of constraint sets which are

intersected (l. 6). The node is removed from the table𝑀 and the resulting constraints returned.

The emptiness of a conjunction of the form

∧
𝛼∈𝐴𝑝

∧∧
𝛼∈𝐴𝑛

¬𝛼 ∧𝐷 is expressed by the function

normalize_summand. The function chooses the smallest (according to the total order ⪯ on type

variables) top-level variable that is not in Δ, and extract it from the summand, yielding a single

constraint on that variable denoting the emptiness of the summand (l. 10–12). If there are no

top-level variable, the function recursively explores the underlying constructors, with a function

that mimics the emptiness test on components (and recursively calls normalize).

1 let 𝑀 = H.create ()

2 let rec normalize Δ 𝑁 =

3 if 𝑁 ∈ 𝑀 then H.find 𝑀 𝑁

4 else begin

5 H.add 𝑀 𝑁 {⊤};
6 let C =

l

(𝐴𝑝 ,𝐴𝑛,𝐷 ) ∈dnf (𝑁 .def )

Δ normalize_summand Δ 𝐴𝑝 𝐴𝑛 𝐷 in

7 H.remove 𝑀 𝑁 ; C end

8 and normalize_summand Δ 𝐴𝑝 𝐴𝑛 𝐷 =

9 let 𝐴 = (𝐴𝑝 ∪𝐴𝑛) \ Δ in
10 if 𝐴 ≠ ∅ then

11 let 𝛼 = min 𝐴 in (∗ Minimal type variable according to ⪯ ∗)

12 if 𝛼 ∈ 𝐴𝑝 then {{(0, 𝛼,¬(𝐴𝑝 \{𝛼} ∧𝐴𝑛 ∧ 𝐷))}} else {{(𝐴𝑝 ∧𝐴𝑛\{𝛼} ∧ 𝐷, 𝛼, 1)}}
13 else (norm_const Δ 𝐷.const) ⊓Δ (norm_prod Δ 𝐷.prod) ⊓Δ ...

14 let rec propagate Δ 𝐶0 𝐶1 Σ =

15 if 𝐶1 = ⊤ then {𝐶0} else
16 let (𝑁1, 𝛼, 𝑁2) :: 𝐶′

1
= 𝐶1 in

17 let 𝑁 = 𝑁1 \ 𝑁2 in

18 if 𝑁 ∈ Σ then propagate Δ (𝐶0 ⊓Δ {(𝑁1, 𝛼, 𝑁2)}) 𝐶′
1
Σ

19 else

20 let C = {𝐶0 ⊓𝐶1} ⊓Δ (normalize Δ 𝑁 ) in

21

⊔
𝐶∈C

propagate Δ ⊤ 𝐶 (Σ ∪ {𝑁 })

Fig. 4. The normalize and propagate functions
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Propagate. The function propagate Δ 𝐶0 𝐶1 𝑀 Σ iteratively enriches the constraint set 𝐶0 ⊓𝐶1

with the constraints induced by 𝐶1 (𝐶0 contains the constraints already treated) until it reaches a

fixpoint (Σ stores the induced constraints already visited). Note the interplay between normalize

and propagate. When normalize generates a single constraint for a top-level variable, propagate

calls normalize again on the bounds of that constraint.

Solve. The function solve 𝐶 represents the constraint set 𝐶 as a principal type substitution. It

makes use of the build function (Section 4) to solve a set of equations. Each equation is generated

by turning a subtyping constraint 𝑁1 ≤ 𝛼 ≤ 𝑁2 into an equation 𝛼 = (𝑁1 ∨ 𝛼 ′) ∧ 𝑁2, for a fresh 𝛼
′
.

6 Extensions
In Section 4 and Section 5, we described three core components: arrows, products, and constants.

These components are the most commonly used in set-theoretic type formalizations, but a prac-

tical implementation of set-theoretic types also need other core components to model common

programming structures (Section 6.1). Additionally, these core components can be used as building

blocks and combined to define new components via encodings (Section 6.2).

6.1 Core extensions
Intervals. The component for constants cannot be used to represent all the individual integers,

as the type int would then need to be defined as an infinite (or very large) union. Therefore, SSTT

features a component representing intervals as sorted lists of disjoint intervals.

Tuples. Products can be generalized to cover tuples of any arity. For that, we can implement a

generic tuple component parametrized by an arity 𝑛. It is straightforward to extend the subtyping

and tallying algorithms accordingly (e.g. for 𝑛 = 3, a DNF of tuples (𝑡1, 𝑡2, 𝑡3) is empty if and only if

the corresponding DNF of pairs 𝑡1 × (𝑡2 × 𝑡3) is empty).

Records. The theory of set-theoretic types features records that can be open or closed, and fields

that may be optionally absent. Record atoms are simply maps from field names to optional types,

as well as a Boolean indicating if the record is closed (its list of fields is exact) or opened (it may

have other, unknown fields). In order to represent absent fields, we define optional types as the

pairs (𝑡, 𝑎) where 𝑎 is either ⊤ (the value may be absent) or ⊥ (the value is not absent). An optional

type (𝑡, 𝑎) is empty if and only if 𝑡 is empty and 𝑎 = ⊥. Then, subtyping for records can be encoded

as subtyping for tuples: the record atoms composing a DNF can be turned into tuple atoms of

optional types by fixing an order over fields. For instance, the DNF {{{ℓ1 : 𝑡1}}} ∨ {{{ℓ2 :? 𝑡2 ..}}} can

be encoded as ((𝑡1,⊥), (0,⊤), (0,⊤)) ∨ ((1,⊤), (𝑡2,⊤), (1,⊤)) (the first component of the tuples

represents the field ℓ1, the second component represents ℓ2, and the last component represents the

other fields). Note that while our record can be opened (extensible via sub-typing) they do not

feature row polymorphism, which requires substantial modifications of the tallying procedure [15].

Tagged types. A tagged type𝑇 (𝑡) intuitively represents the values {𝑇 (𝑣) | 𝑣 ∈ 𝑡}, where𝑇 ∈ Tags
is a unary constructor of our language disjoint from other values (in particular, two types𝑇1 (𝑡) and
𝑇2 (𝑡) with 𝑇1 ≠ 𝑇2 are disjoint). Tagged types have several uses: (𝑖) they can be used to represent

boxed values, and in conjunction with unions, to implement algebraic data types where every

constructor is disjoint from the others, (𝑖𝑖) they can be used as a building block to extend our type

algebra with new type constructors in a modular way using encodings (cf. Section 6.2), and (𝑖𝑖𝑖) in
addition to the representation of boxed values, they can be generalized to represent opaque data

types with an invariant or covariant parameter, as described in [2]. Extending the subtyping and

tallying algorithms is straightforward, following the inductive relations given in this last work.
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6.2 Encodings
In addition to core extensions, new type constructors can be added by encoding them as combi-

nations of core components. This approach has two advantages: (𝑖) it allows the programmer to

extend the type algebra in a modular way, without having to modify the core components of the

library, and (𝑖𝑖) it does not require any addition to the subtyping and tallying algorithms. Designing

such an extension requires to answer these three questions:

(1) how to encode our new type constructors using the existing core components?

(2) how to recognize the encoding in a type?

(3) how to extract the parameters of our type constructors from their encoding?

As long as we are only interested in subtyping and tallying, only the first point matters. However,

as soon as we want to be able to inspect our types (e.g. for pretty-printing, cf. Appendix B), it

becomes necessary to recognize when a subtree of our type comes from an encoding, and how to

destruct this encoding. In order to make our encodings easily recognizable in a type, each extension

should be disjoint from the other values. For instance, encoding the list type [𝛼*] as the type

𝑋 = nil ∨ 𝛼 × 𝑋 as we did in Section 1 is ambiguous, as it becomes unclear whether int × nil
should be printed as a pair or as a list. We solve this problem by using tagged type: each constructor

of an extension is tagged by a distinct tag that ensures its disjointness w.r.t other types (e.g. list

and pairs are kept apart) and can be used by the pretty-printer to defer printing to a specialized

function, provided by the extension.

Extension Constructor Encoding

Single character ’a’ Chr(𝑖𝑎) where 𝑖𝑎 is the ASCII encoding of ’a’

Char interval ’a’-’z’ Chr(𝑖𝑎 . . 𝑖𝑧)Characters

Any (supertype) Chr(int)
Single string "abc" Str(𝑐abc) where 𝑐abc is a constant representing "abc"

Strings

Any (supertype) Str(cst) where cst is the supertype of constants

Empty list [] Lst(𝑐nil) where 𝑐nil is a constant representing []
Any (supertype) 𝜇𝑋 . Lst(1 × 𝑋 ) ∨ Lst(𝑐nil)
𝑡 followed by 𝑙 Lst(𝑡 × 𝑙)Lists (regexp)

𝑡* followed by 𝑙 𝜇𝑋 . Lst(𝑡 × 𝑋 ) ∨ 𝑙

Fig. 5. Example of extensions and their encodings

As an example, Figure 5 proposes some extensions and the corresponding encodings. The list

encoding allows us to support regular expression types purely as an extension. Although they are

isomorphic to recursive products, we can provide a printing function which decompiles the type

into a regular expression using using Brzozowski Algebraic Method [4]. Other extensions have

also been implemented through encodings, such as Booleans, floating-point numeric types, and

opaque data types supporting multiple parameters of different variances.

Gradual types. An important contribution of [23] is that gradual types (that may contain a

dynamic component « ? ») can be fully represented by a pair of static types (its lower and upper

materializations). A type system implementor can simply represent types as pair as SSTT types

without any modification. This is the approach taken by Elixir [8].

7 Evaluation
In this section, we evaluate the performance of our implementation (submitted as an anonymized

artifact). in particular the semantic simplification of BDTs, and the subtyping and tallying algorithms.

https://github.com/elixir-lang/elixir/tree/main/lib/elixir/lib/module/types
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SSTT is implemented in OCaml. The library (excluding tests) amounts to 6900 loc, of which

3700 are the core type algebra and subtyping (Sections 3, 4 and 5.1). The code for the tallying is

470 loc, the rest being extensions (Section 6) and the pretty-printer (Appendix B). We measured

the performance
4
of SSTT for two categories of operations: type construction (∧, ∨, ¬, and the

function build), and constraint solving (via the tallying algorithm, which itself uses subtyping). We

generated numerous sets of constraints by running a type system implementation [2] (an improved

version of [11, 12]) on a corpus, and exporting the tallying instances it solves as a JSON file. This

has been done for three corpuses (some examples are given in Appendix C):

A. Hindley-Milner (150 loc, 30 functions, ≈ 2000 tallying instances) Generic functions in a

Hindley-Milner style. Most functions are recursive and involve pattern-matching over list or bal-

anced binary tree types, and their type is inferred. The tallying instances generated involve multiple

type variables (due to parametric polymorphism and recursion), but few unions or intersections

(unions are only used to encode ADTs with disjoint constructors).

B. Overloaded (220 loc, 68 functions, ≈ 8000 tallying instances) Non-recursive and non-generic

overloaded functions. For each, a type capturing its overloaded behavior is inferred using type

narrowing techniques. The most overloaded function is an intersection of 26 arrows. The tallying

instances generated involve many intersections and unions but fewer type variables.

C. HM+Overloaded (345 loc, 83 functions, ≈ 3500 tallying instances) Recursive, generic and

overloaded functions. This corpus involves parametric polymorphism, ad-hoc polymorphism,

and encodings to model mutable data structures (references, arrays, etc.). The tallying instances

generated involve unions, intersections, and multiple type variables.

Our first observation is that none of these corpuses can be type-checked in a reasonable time

if types are not semantically simplified regularly as described in Section 4.8: inferred types (in

particular arrows) get too large during type inference, to a point where some tallying instances do

not terminate after a minute. Implementing hash-consing for all the components and layers of the

node structure does not help, though it allows sharing about 50% of the nodes, thus reducing the size

of some BDTs by making more atoms syntactically equivalent. Consequently, our benchmark files

containing the tallying instances have been generated by running the type-checker implementation

in a setting where types are systematically simplified.

Corpus Measure None SS HC SS+HC None* SS* CDuce

Type building 0.04 0.12 0.10 0.37 0.04 0.16 N/A

Solving 0.14 0.16 0.28 0.44 0.22 7.17 N/AA. Hindley-Milner

Total 0.18 0.28 0.38 0.81 0.26 7.33 N/A

Type building 0.02 0.07 0.09 0.28 0.02 0.08 0.07

Solving 0.06 0.08 0.25 0.40 0.06 0.10 0.18B. Overloaded

Total 0.08 0.15 0.34 0.68 0.08 0.18 0.25

Type building 0.02 0.06 0.13 0.34 0.02 0.14 N/A

Solving 0.10 0.11 0.24 0.44 0.96 1.14 N/AC. HM+Overloaded

Total 0.12 0.17 0.37 0.77 0.98 1.29 N/A

Fig. 6. Time performance (in s) for different simplification and optimization settings

Figure 6 shows the time performance for building the types and solving the constraints for each

of these benchmark files, under different settings: (SS) systematic semantic simplification of BDTs,

4
All experiments were done on a Windows 11 laptop running Ubuntu 24 on WSL 2, Intel i5-12500H CPU, 32 GB ram.
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(HC) hash-consing, (SS+HC) combination of the two, and (None) none of the two. An asterisk (*) is
added when the non-optimized version of subtyping (Algorithm 1) is used instead of the hash-based

one (Algorithm 2). All configurations implement the tallying optimizations described in Section 5.2

(without it, none of the benchmarks finish after a minute).

This table clearly outlines that semantic simplification is essential. Even for instances that can be

handled by all strategies (and recall that only the SS strategy was able to generate those instances)

its overhead in type construction is smaller than for hash-consing, while its performance for

constraint solving is close to the None strategy. Hash-consing on the other hand negatively impacts

performance of constraint solving. Although it allows more sharing of nodes, all tests used less

than 250 MB of peak ram usage, so memory consumption is not an issue.

The positive impact of having an optimized cache for subtyping is also visible. For benchmarks

with complex tallying instances (in particular corpuses A and C), it greatly reduces the constraint

solving time, as shown by the columns (None) and (None*). The effect is even more visible when

semantic simplification is enabled, in the columns (SS) and (SS*), as the simplification of a BDT

generates numerous similar subtyping instances that will share the same cache and be optimized

away by Algorithm 2 (this is why we also observe a positive impact on type building performance).

The column (CDuce) indicates the time performance of the CDuce implementation of set-theoretic

types (cf. Section 8), which does not perform global hash-consing nor semantic simplification of

BDTs, but does perform local hash-consing when building a type from equations to avoid duplicate

nodes. On the corpus B, our implementation with semantic simplification is 66% faster than

the CDuce implementation and generates simpler solutions. Our implementation with no type

simplification is 212% faster than CDuce. Note that the comparison is not available for the other

corpuses, as CDuce does not support tagged types (Section 6) which are used by the other corpuses

to encode algebraic and mutable data types.

8 Related work and future work
The overall architecture of descriptors we use to represent set-theoretic types follows the one

described in [5], though the latter does not feature type variables. In this paper, we describe this

architecture in more details and focus on some specific points that we think are important and

non-trivial: the handling of type variables, type substitutions, the simplification of BDTs, and

the construction of recursive types. The algorithms used for subtyping and tallying have been

first described by [18] and [13] respectively. This paper presents an alternative formulation of

the tallying algorithm that enables optimizations and a novel implementation of the subtyping

algorithm which makes better use of cached results.

Set-theoretic types in the CDuce language. The CDuce language (implemented in OCaml) has been

the first to implement monomorphic higher-order set-theoretic types (the earlier XDuce [21] only

featured first-order, top-level functions and no arrow type). It was later extended with type variables

and tallying to handle parametric polymorphism [13]. This implementation supports arrows, pairs,

records, integer intervals, characters and XML types. Although CDuce has been until recently the

only complete open-source implementation of set-theoretic types, its architecture makes it difficult

to reuse for other purposes. First, several XML-only features (document types, XML namespaces)

needlessly complicate the type algebra. Second, since its design is very monolithic (the type algebra

and subtyping algorithm are in a single file containing mutually recursive definitions), extending it

with other construct or experimenting different data-structure or caching strategies is not trivial.

Set-theoretic types in mainstream languages. Two examples of set-theoretic type systems for

mainstream languages are Etylizer [25] (for Erlang), and Elixir, [8]. Both provide an implementation

of set-theoretic types that supports arrows and a generalized form of records for typing maps. Both

https://gitlab.math.univ-paris-diderot.fr/cduce/cduce
https://gitlab.math.univ-paris-diderot.fr/cduce/cduce/-/blob/dev/types/types.ml
https://github.com/etylizer/etylizer
https://github.com/elixir-lang/elixir/tree/main/lib/elixir/lib/module/types
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use BDDs to represent the different components; however, they also differ from our approach on

several aspects. For instance, a node in the Etylizer implementation is represented by an identifier,

and the corresponding definition must be looked up from a separate mapping. This choice of design

seems motivated by the fact that Erlang does not allow the definition of mutable data structures,

making it difficult to build recursive types or to simplify types if their definition is stored in the

node itself. To our knowledge, these two implementations do not perform systematic simplification

nor hash-consing of the types.

Lazy BDDs. The CDuce and Elixir use lazy BDDs for representing arrow components. As ex-

plained in [5], lazy BDDs avoid a potential explosion in size when repeatedly applying unions,

and this until an intersection, difference or negation is performed. When it happens, the lazy

union branches of the BDD must be materialized, the hope being that the intersection or difference

still yields a simpler BDD by canceling some lazy union branches. Our semantic simplification

(Section 3.3) can be adapted to work on lazy BDDs, but doing so increases its complexity and

voids Property 3.10 that allows to quickly compute simplified negations. Overall, even if both

approaches aim at keeping type representations small, they have different trade-offs: our systematic

simplification tends to increase the building time of BDDs but simplifies future manipulations. Lazy

BDDs have linear time unions but an increased complexity for some operations (such as negations).

Syntactic and algebraic approaches. While there are clear theoretical differences between semantic

subtyping and syntax based ones, the separation lies elsewhere when it comes to implementation.

Either the type system enjoys only disjoint union types, as is the case of MLsub [17]. In such works,

subtyping remains polynomial, since types are equivalent to deterministic automata, and subtyping

amounts to inclusion of their language, which is polynomial. Or some form of non-disjoint union

occurs, as is the case in the early work of Aiken [1] or more recently MLStruct [24]. In both cases,

either an exponential blow-up occurs when computing type operations (e.g. negation) or when

deciding subtyping, by traversing the potentially exponential DNF of the type as we do. Both works

mention in passing that memoizing intermediate results in a mutable table helps in practice, but do

not give any detail. We believe our techniques could be applied to these works.

Data-flow analysis. The knowledgeable reader will remark that the subtyping algorithm could be

cast in the framework of data-flow analysis. It is, after all, the computation of a fixed point of some

monotonic predicate over a graph (the type, whose vertices are the nodes). For instance, Kildall’s

algorithm [22] or one of its variations could be used to compute the emptiness predicate. The major

difference with our approach is that, to the best of our knowledge, all variants of Kildall’s algorithm

require the full graph (and often pre-process it). In our case, this would entail calling the Ψprod,arrow
functions eagerly, generating a potentially exponential type up-front to test its emptiness.

Conclusion and future work. We proposed a modular data structure to represent recursive set-

theoretic types supporting multiple type constructors, unions, intersections, negations, and type

substitutions. This representation relies on Binary Decision Trees (BDTs), equipped with a semantic

simplification procedure which eliminates redundancy that accumulates when manipulating types,

and we provide practical improvement to the traditional algorithms for subtyping and tallying. The

performance of SSTT is compared against CDuce, the historical implementation of set-theoretic

types, showing a significative improvement (212% faster, and still 66% faster when systematically

simplifying types). While SSTT is already usable, we plan to extend it to support row polymorphism

for record [6], as well as extensions relevant to dynamic languages such as Python (such as object

types).

https://gitlab.math.univ-paris-diderot.fr/cduce/cduce/-/blob/dev/types/bdd.ml
https://github.com/elixir-lang/elixir/pull/14806
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A Semantic Subtyping
This appendix summarizes the interpretation of set-theoretic types formalized in [20] and how it

can be used to define semantic subtyping.

A.1 Type interpretation
In order to define subtyping over these types, the idea is to interpret each ground type (i.e., a

type that does not contain type variables) as a set of values of our language. Then, subtyping can

be defined as set containment over the interpretation of types. Intuitively, each ground type is

associated to the set of values having this type: for instance, the base type true is interpreted as

the singleton containing the constant true, while the type bool = true ∨ false is interpreted as

the set {true, false}.
However, this idea becomes subtler when dealing with arrow types. Although an arrow type

intuitively corresponds to a function (i.e., a 𝜆-abstraction), interpreting an arrow type as a set of

𝜆-abstractions is problematic as it yields a circular reasoning: determining if a 𝜆-abstraction is in

the interpretation of a type requires to define a type system, which in turns needs the subtyping

relation that we are trying to build. In order to break this circularity, the interpretation of types is

not defined over values of our language but over a domain D defined below. Note that this does

not necessarily invalidate the “types as set of values” intuition, as it is discussed in Castagna and

Frisch [9, Section 2.7].

In addition, we need to define an interpretation for all types, and not only ground ones (the

interpretation domain D should account for type variables). A simple model was proposed by [20].

We succinctly present it in this section. The reader may refer to [7, Section 3.3] for more details.

Definition A.1 (Interpretation domain [20]). The interpretation domain D is the set of finite terms

𝑑 produced inductively by the following grammar

𝑑 F 𝑐𝐿 | (𝑑,𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿

𝜕 F 𝑑 | Ω
where 𝑐 ranges over the set C of constants, 𝐿 ranges over finite sets of type variables, and where Ω
is such that Ω ∉ D.

The elements of D correspond, intuitively, to (denotations of) the results of the evaluation of

expressions, labeled by finite sets of type variables. In particular, in a higher-order language, the

results of computations can be functions which, in this model, are represented by sets of finite

relations of the form {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿 , where Ω (which is not in D) can appear in second

components to signify that the function fails (i.e., evaluation is stuck) on the corresponding input.

This is implemented by using in the second projection the meta-variable 𝜕 which ranges over

DΩ = D∪{Ω} (we reserve 𝑑 to range overD, thus excluding Ω). This constant Ω is used to ensure

that 1 → 1 is not a supertype of all function types: if we used 𝑑 instead of 𝜕, then every well-typed

function could be subsumed to 1 → 1 and, therefore, every application could be given the type 1,
independently of its argument as long as this argument is typeable (see Section 4.2 of [19] for details).

The restriction to finite relations corresponds to the intuition that the denotational semantics of a

function is given by the set of its finite approximations, where finiteness is a restriction necessary

(for cardinality reasons) to give the semantics to higher-order functions. Finally, the sets of type

variables that label the elements of the domain are used to interpret type variables: we interpret

a type variable 𝛼 by the set of all elements that are labeled by 𝛼 , that is the set {𝑑 | 𝛼 ∈ tags(𝑑)}
(where we define tags(𝑐𝐿) = tags((𝑑, 𝑑 ′)𝐿) = tags({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿) = 𝐿).

We now define the interpretation J𝑡K of a type 𝑡 (this notation should not be mistaken with the

interpretation J𝐵K of a BDD as a type, defined in Section 3). The interpretation J𝑡K should satisfy
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the following equalities, where Pfin denotes the restriction of the powerset to finite subsets and B
denotes the function that assigns to each base type the set of constants of that type, so that for

every constant 𝑐 we have 𝑐 ∈ B(b𝑐 ) (we use b𝑐 to denote the base type of the constant 𝑐):

J0K = ∅ J𝛼K = {𝑑 | 𝛼 ∈ tags(𝑑)} J𝑡1 ∨ 𝑡2K = J𝑡1K ∪ J𝑡2K
J𝑏K = B(𝑏) J¬𝑡K = D \ J𝑡K J𝑡1 × 𝑡2K = J𝑡1K × J𝑡2K

J𝑡1→𝑡2K = {𝑅 ∈ Pfin (D × DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅. 𝑑 ∈ J𝑡1K =⇒ 𝜕 ∈ J𝑡2K}
Note that, even though we included 1 and the intersection ∧ in the syntax of our types (Defini-

tion 2.1), those two can be defined from the other constructors: 1 = ¬0 and 𝑡1∧𝑡2 = ¬(¬𝑡1∨¬𝑡2) (De
Morgan’s law). It is easy to see that, with these definitions, we have J1K = D and J𝑡1∧𝑡2K = J𝑡1K∩J𝑡2K.
Thus, it is not necessary to define an interpretation for them.

We cannot take the equations above directly as an inductive definition of J·K because types

are not defined inductively but coinductively. Notice however that the contractivity condition

of Definition 2.1 ensures that the binary relation ▷ ⊆ T×T defined by 𝑡1 ∨ 𝑡2 ▷ 𝑡𝑖 , 𝑡1 ∧ 𝑡2 ▷ 𝑡𝑖 ,

¬𝑡 ▷ 𝑡 is Noetherian. This gives an induction principle
5
on T that we use combined with structural

induction on D to give the following definition, which validates the equalities above.

Definition A.2 (Set-theoretic interpretation of types). We define a binary predicate (𝑑 : 𝑡) (“the
element 𝑑 belongs to the type 𝑡”), where 𝑑 ∈ D and 𝑡 ∈ T , by induction on the pair (𝑑, 𝑡) ordered
lexicographically. The predicate is defined as follows:

(𝑐 : 𝑏) = 𝑐 ∈ B(𝑏)
(𝑑 : 𝛼) = 𝛼 ∈ tags(𝑑)

((𝑑1, 𝑑2) : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) and (𝑑2 : 𝑡2)
({(𝑑1, 𝜕1), ..., (𝑑𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) or (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = not (𝑑 : 𝑡)
(𝜕 : 𝑡) = false otherwise

We define the set-theoretic interpretation J.K : T → P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.

A.2 Semantic subtyping
Now that we have a set-theoretic interpretation of types, we can define the subtyping preorder and

its associated equivalence relation as follows.

Definition A.3 (Subtyping relation). We define the subtyping relation ≤ and the subtyping equiva-
lence relation ≃ as 𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K and 𝑡1 ≃ 𝑡2 ⇐⇒def (𝑡1 ≤ 𝑡2) and (𝑡2 ≤ 𝑡1) .
This subtyping relation is decidable and is sometimes referred to as semantic subtyping, as it is

not defined on the syntax of the type but on its interpretation.

With this set-theoretic definition of subtyping, usual properties of sets are inherited by subtyping,

for instance:

𝑡1 ∨ 𝑡2 ≃ 𝑡2 ∨ 𝑡1 𝑡1 ∧ 𝑡2 ≃ 𝑡2 ∧ 𝑡1 (commutativity)

𝑡 ∨ 𝑡 ≃ 𝑡 𝑡 ∧ 𝑡 ≃ 𝑡 (idempotence)

¬(¬𝑡) ≃ 𝑡 (double complement)

𝑡 ∨ (𝑠1 ∧ 𝑠2) ≃ (𝑡 ∨ 𝑠1) ∧ (𝑡 ∨ 𝑠2) 𝑡 ∧ (𝑠1 ∨ 𝑠2) ≃ (𝑡 ∧ 𝑠1) ∨ (𝑡 ∧ 𝑠2) (distributivity)

5
In a nutshell, we can do proofs and give definitions by induction on the structure of unions and negations—and, thus,

intersections—but arrows, products, and base types are the base cases for the induction.
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For any two type substitutions 𝜙1 and 𝜙2, we write 𝜙1 ≃ 𝜙2 the pointwise subtyping equivalence

of 𝜙1 and 𝜙2. An important property of the interpretation above is that subtyping is preserved by

type substitutions:

∀𝑡1, 𝑡2, 𝜙 . 𝑡1 ≤ 𝑡2 ⇒ 𝑡1𝜙 ≤ 𝑡2𝜙

However, a naive definition of vars(𝑡) is not preserved by subtyping equivalence: for instance,

we have 1 ≃ 𝛼 ∨ ¬𝛼 , while a purely syntactic definition of vars(𝑡) would yield vars(1) = ∅ and

vars(𝛼 ∨ ¬𝛼) = {𝛼}. In order to avoid this, we define vars(𝑡) as being the set of meaningful type
variables in 𝑡 . This notion has been introduced by Castagna et al. [14], where it was noted as

mvar(𝑡), and is defined below.

Definition A.4 (Type variables). The set of type variables of a type 𝑡 , noted vars(𝑡), is the following
set of type variables:

vars(𝑡) =
def {𝛼 ∈ V | 𝑡{𝛼 { 0} ; 𝑡}

With this definition, the set of variables of a type is preserved by subtyping equivalence:

∀𝑡1, 𝑡2. 𝑡1 ≃ 𝑡2 ⇒ vars(𝑡1) = vars(𝑡2).
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B Pretty printing of types
Section 4 defines an internal representation for types that captures their semantic properties.

This semantic representation makes it possible to implement set-theoretic connectives (∧, ∨, ¬)
efficiently, going from an algebraic representation of a type into a more semantic representation.

However, when printing a set-theoretic type, we need to go the other direction: going from our

internal representation back into an algebraic one. We propose in this section a quick description

of the challenges and techniques we implemented to convert types into an algebraic form.

B.1 Printing of descriptors
For each component of a descriptor (arrow, product, constant), we can easily extract a DNF of atoms

directly from their BDT representation. However finding a concise algebraic representation for

unions of components requires some more work. The naive approach consisting in systematically

printing the union of all components may generate overly complicated notations: for instance, the

type 1 is printed as AnyArrow | AnyPair | AnyConst, and the type 𝑡 =
def ¬(int × int) is printed

as AnyArrow | (AnyPair \ (int,int)) | AnyConst. Instead, we propose the following algorithm

for printing a descriptor 𝐷 in a more concise way:

(1) Each component of 𝐷 is converted into an algebraic representation, and these algebraic

representations are regrouped inside a union. We simplify this union by eliminating empty

clauses. This yields an algebraic representation 𝑃1 for 𝐷 . For instance, for the descriptor of

𝑡 , this yields 𝑃1 =
def

AnyArrow | (AnyPair \ (int,int)) | AnyConst.
(2) Independently, the complement of each component of 𝐷 is converted into an algebraic

representation, and these algebraic representations are regrouped inside a union. For in-

stance, for the descriptor of 𝑡 , this yields EmptyArrow | (int,int) | EmptyConst. Again,

we simplify this union by eliminating empty clauses, yielding (int,int). We obtain an

algebraic representation 𝑁 for the negation of 𝐷 .

(3) We negate the algebraic representation 𝑁 and perform trivial simplifications (such as

elimination of double negations), yielding a representation 𝑃2 for 𝐷 . In our example, we

obtain 𝑃2 =
def ¬(int,int).

(4) We compare the length of 𝑃1 and 𝑃2 (using any relevant metric, for instance the number of

nodes in their AST), and return the smaller one (in our case, 𝑃2).

B.2 Printing of (recursive) nodes
Our types are represented by graphs of nodes that may contain cycles (in the case of recursive

types). Thus, when printing a descriptor, it is not enough to recursively call the printer on each

node referenced by its atoms, as this may result in an infinite inlining of recursive types. Instead,

we follow the following strategy for printing a node 𝑁 :

(1) For each node in the connected component deps(𝑁 ) of 𝑁 , we compute an algebraic form for

the top-level structure of its definition (referenced nodes are kept as symbolic references).

For instance, when printing the type 𝜇𝑋 . ((𝛼 ∧ (int → bool)) × 𝑋 ) ∨ nil represented in

Figure 2, this leaves us with:

N1 where N1=(N2,N1)|nil and N2=’a&(N3->N4) and N3=int and N4=bool

(2) Then, we try to inline the definition of each node (N1,N2,N3,N4 in our example), but only

when doing so reduces the length of the whole algebraic representation. This way, recursive

references will not be inlined. In our example, the nodes N2, N3, N4 are inlined, yielding

the algebraic expression N1 where N1=(’a&(int->bool),N1)|nil.
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C Examples of benchmarks
The corpuses have been type-checked using [2], a type system based on the techniques of inference

and type narrowing introduced in [11].

C.1 A. Hindley-Milner corpus
This corpus has been type-checked in a configuration where the type inference algorithm does not

try to infer overloaded types for functions, but single arrow types (as in HM systems). Here is an

excerpt (the type inferred for each function is added as a comment):

1 let fixpoint = fun f ->
2 let delta = fun x ->
3 f ( fun v -> ( x x v ))

4 in delta delta
5 (∗ (( 'a -> ' b) -> x1) -> x1 where x1 = ' c & ( 'a -> ' b) ∗)
6

7 let length_stub length lst =
8 if lst is [] then 0 else (length (tl lst))+1
9 (∗ ( 'a & [ any ∗ ] -> int) -> [] | any ::( 'a & [ any ∗ ]) -> int ∗)
10

11 let length = fixpoint length_stub
12 (∗ [ any ∗ ] -> int ∗)

Type-checking this excerpt generates 74 tallying instances, for instance:

"vars": [ "'a", "'b", "'c", "'d", "'e" ],
"mono": [],
"constr": [

[
"(('a -> 'b) -> 'c & ('a -> 'b)) -> 'c & ('a -> 'b)",
"(('d & lst(x1) -> int) -> lst(tuple0 | (any, 'd & lst(x1))) -> int) -> 'e

where x1 = tuple0 | (any, lst(x1))"
]

]

C.2 B. Overloaded corpus
This corpus has been type-checked in a configuration where the type inference algorithm tries to

infer overloaded types for functions (except when the domain of the function is explicitly given).

Here is an excerpt (the type inferred for each function is added as a comment):

1 let succ x =
2 match x with
3 | 0 -> 1 | 1 -> 2 | 2 -> 3 | 3 -> 4 | 4 -> 5

4 | 5 -> 6 | 6 -> 7 | 7 -> 8 | 8 -> 9 | 9 -> 10

5 | 10 -> 11 | 11 -> 12 | 12 -> 13 | 13 -> 14 | 14 -> 15

6 | 15 -> 16 | 16 -> 17 | 17 -> 18 | 18 -> 19 | 19 -> 20

7 | 20 -> 21 | 21 -> 22 | 22 -> 23 | 23 -> 24 | 24 -> 25

8 | _ -> 0

9 end
10 (∗ (0 -> 1) & (1 -> 2) & ... & (24 -> 25) & (~(0..24) -> 0) ∗)
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1 let test (y:(5..15)) = succ (succ (succ (succ (succ y))))
2 (∗ (5..15) -> (10..20) ∗)

Type-checking this excerpt generates 2941 tallying instances (most are trivial and are triggered by

simplification heuristics), for instance:

"vars": [ "'a" ],
"mono": [],
"constr": [

[
"(1 -> 2) & (2 -> 3) & (3 -> 4) & (4 -> 5)
& (5 -> 6) & (6 -> 7) & (7 -> 8) & (8 -> 9) & (9 -> 10)
& (10 -> 11) & (11 -> 12) & (12 -> 13) & (13 -> 14) & (14 -> 15)
& (15 -> 16) & (16 -> 17) & (17 -> 18) & (18 -> 19) & (19 -> 20)
& (20 -> 21) & (21 -> 22) & (22 -> 23) & (23 -> 24) & (24 -> 25)
& (~(0..24) -> 0) & (0 -> 1)",
"(5..15) -> 'a"
]

]

C.3 C. HM+Overloaded corpus
This corpus has been type-checked in a configuration where the type inference algorithm performs

type narrowing, and where mutable data structures (arrays, references) are encoded as opaque data

types. Here is an excerpt (the type inferred for each function is added as a comment):

1 let filter_imp (f:( 'a -> bool) & ( 'b -> false)) (arr:array ( 'a| 'b)) =
2 let res = array () in
3 let mut i = 0 in
4 while i < (len arr) do
5 let e = arr[i] in
6 if f e do push res e end ;
7 i := i + 1

8 end ;
9 return res
10 (∗ ( 'b -> false)&( 'a -> bool) -> array ( 'b| 'a) -> array ( 'a\ 'b | ' c) ∗)

Type-checking this excerpt generates 70 tallying instances, for instance:

"vars": [ "'a", "'b", "'c" ],
"mono": [ "'a", "'b" ],
"constr": [

[
"('b -> bool(false)) & ('a -> bool(true | false))", "'a \\ 'b -> 'c"
]

]
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