
Finding Shortest Walks in Kuru Kuru Kururin1

Mickaël Laurent # Ñ2

Charles University, Prague, Czech Republic3

Maher Mallem #Ñ4

Inria, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP, UMR 5668, 69342, Lyon cedex5

07, France6

Abstract7

This paper serves as a celebration of the twenty-fifth anniversary of Kuru Kuru Kururin. Although8

this video game is presented as a collection of two-dimensional puzzles based on rotation, it naturally9

invites players to complete its levels as quickly as possible. This has led to a surprisingly rich and10

challenging playing field to finding foremost temporal walks. In this work, we tackle this problem11

both in theory and in practice. First, we introduce a model for the game and provide an in-depth12

complexity analysis. Most notably, we show how each gameplay mechanic independently brings a13

layer of NP-hardness and/or co-NP-hardness. We also provide a pseudo-polynomial time algorithm14

for the general problem and identify several cases which can be solved in polynomial time. Along15

the way, we discuss connections to the more established framework of temporal graphs, both in the16

point model and the interval model. Then, we propose simple and flexible algorithmic techniques17

to reduce state space and guide the search, offering trade-offs between precision and computation18

speed in practice. These techniques were implemented and tested using a full recreation of the game19

physics and the levels from the original game. We demonstrate the efficiency of our framework in20

several settings - with or without taking damage, with or without unintended game mechanics -21

and relate empirical struggles which we encountered in practice to our complexity analysis. Our22

implementation is open source and fully available online, offering a novel and amusing setting to23

benchmark shortest path algorithms.24

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;25

Theory of computation → Shortest paths26

Keywords and phrases shortest path, complexity27

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2328

1 Introduction29

Kuru Kuru Kururin is a video game published by Nintendo for the Game Boy Advance in30

2001. This game is composed of a succession of levels, in which the player (the helirin) has31

to walk through a maze, from the start area to (one of the) ending area(s).32

Figure 1 The helirin never
stops rotating (here, clockwise)

Figure 2 When hitting a
wall, it loses a heart...

Figure 3 ...and is repelled
(both in position and angle)

While studying the computational complexity of video games is nothing new (e.g.,33

see [3, 9, 10] for classic video game series and [8, 17, 23] for pathfinding in video games), this34

game is unique in that the helirin constantly spins around at a fixed angular speed. The35

© Mickaël Laurent and Maher Mallem;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mickael.laurent@matfyz.cuni.cz
https://mlaurent.ovh
https://orcid.org/0000-0003-1590-2392
mailto:maher.mallem@ens-lyon.fr
https://perso.ens-lyon.fr/maher.mallem/
https://orcid.org/0000-0001-5654-1090
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Finding Shortest Walks in Kuru Kuru Kururin

player cannot control its rotation speed, but can move the helirin up, down, left, right, and36

diagonally at three possible speeds (slow, medium, or fast). The helirin initially has three37

hearts. When the helirin hits a wall, it loses one heart and gets repelled (both in position38

and angle) as shown in Figures 1, 2 and 3. When reaching zero hearts, the level must be39

restarted from the start area. The level may contain some healing areas, which restore all40

hearts and prevent the helirin from taking damage. The starting area also has this effect.41

Some additional mechanics are introduced in later levels. For instance, springs that42

reverse the direction of rotation of the helirin (clockwise / counterclockwise) when hit, or43

moving objects (pistons and spiked balls) that follow a predefined path and must be avoided44

(cf. Figures 4, 5 and 6).45

Figure 4 Some moving
pistons and springs

Figure 5 The helirin hits a
spring...

Figure 6 ...which reverses its
rotation direction

This paper is organized as follows. In Section 2, we propose a simplified model of the46

base gameplay, and extend it with additional mechanics (springs and moving objects). Then,47

we study complexity of each variant in Section 3. Section 4 then studies the actual game48

implementation and shows how to design an approximate path finding algorithm despite49

the gigantic number of states. Finally, in Section 5 we introduce KuruBot, our path-finder50

implementation for Kuru Kuru Kururin, then we elaborate on how it can be configured to51

achieve different goals.52

2 Preliminaries53

▶ Definition 1. N,Z, and Q are respectively defined as the set of positive integers, integers54

and rational numbers. Z+ and Q+ are respectively defined as the set of non-negative integers55

and non-negative rational numbers.56

2.1 Base Gameplay57

▶ Definition 2. A helirin H is defined as a tuple (ℓ, νcard, νdiag, ω) which represents a58

half-length ℓ ∈ N a cardinal speed νcard ∈ N a diagonal pointwise speed νdiag ∈ N and an59

angular speed ωπ, ω ∈ Q+.60

▶ Definition 3. A base helirin state S is defined as a tuple (x, y, α, b) representing a61

center position (x, y) ∈ Z2, an angle απ ∈ Qπ, 0 ≤ α < 1 and a boolean b ∈ {0, 1} indicating62

whether the helirin is turning counterclockwise.63

We treat angles modulo π. Like in the unit circle, angles are measured from segment64

[(0, 0), (0, 1)] and increase as you turn counterclockwise. By default, we assume that a helirin65

is turning counterclockwise - i.e., b = 1.66

▶ Definition 4. The base moveset M is {∅, N, NE, E, SE, S, SW, W, NW}, i.e., a stand-67

still and the eight cardinal and diagonal directions “north”, “north-east”, etc..68

M. Laurent and M. Mallem 23:3

A base move is a couple (µ, d) ∈ M × N where d is the duration of the move.69

During a move, the helirin is constantly spinning around by an angle ωπ (resp. −ωπ) per70

time unit if it is turning counterclockwise (resp. clockwise).71

▶ Definition 5. A base helirin walk W = (S0, t0, (µ1, d1), . . . , (µk, dk)) is a sequence of72

base moves from an initial state S0 and time t0. The duration of walk W is defined as73

d(W) = d1 + . . . + dk.74

▶ Definition 6. Let s ∈ N. A tile is a s × s square in the plane which can interact with the75

helirin. The base tileset Σ features a goal tile kind, which only interacts with the center of76

the helirin, and wall tile kinds, which forbid a polygonal zone within the tile to intersect with77

any part of the helirin. There are five of them here: the plain square, and the four triangles78

filling half of the square.79

A base tile is a tuple (κ, s, x, y) ∈ Σ × N × Z × Z where κ is the tile kind, s is the side80

length and (x, y) are the coordinates of the bottom-left corner of the s × s square.81

We allow tiles to overlap each other. Plus, like in Kuru Kuru Kururin, we consider that82

goal tiles have priority over wall tiles. In other words, collisions with wall tiles are ignored if83

the center of the helirin is in a goal tile.84

▶ Definition 7. A base helirin state S is said to be valid if and only if the helirin does not85

intersect with a forbidden square of a wall tile. A base helirin walk W is said to be valid if86

and only if all intermediate states during the walk are valid.87

▶ Definition 8. Problem BaseKururin.88

Input: A helirin H, a set of base tiles T = {(κ1, s1, x1, y1), . . . , (κN , sN , xN , yN)}, a base89

helirin state S0, times t0, D ∈ Z+.90

Question: Starting from state S0 and time t0, is there a valid base helirin walk to a goal91

tile of duration at most D?92

Let N be the number of tiles. For the sake of simplicity, in the rest of the paper, we93

assume that we have pre-implemented routines to check whether a given base helirin state is94

valid in O(N) time, and whether a given base helirin walk is valid in polynomial time.95

2.2 Additional Gameplay Mechanics96

▶ Definition 9. A segment in the plane has the mirroring property if the following behavior97

occurs. Let q be the denominator of angular speed factor ω. If any part of the helirin would98

intersect the helirin after a unit-time move, the helirin rotation is reverted back by steps of99

1/q until it no longer intersects with the spring tile edge - say, after an angle p/q. Then the100

rotation is reverted back by an additional angle p/q, and the helirin now turns the other way101

around.102

A spring tile is a tile where exactly one edge of the square has the mirroring property.103

When BaseKururin is augmented with spring tiles, four tile kinds are added to base tile-104

set Σ: one for each choice of edge which has the mirroring property.105

▶ Definition 10. A piston is defined as a tuple (s, x, y, τ, ton, toff, (µ, d), ν) which represents106

a square of side length s ∈ N, the starting coordinates (x, y) ∈ Z2 of the bottom-left corner, a107

time period τ ∈ N, a periodic activating time ta ∈ {0, . . . , τ − 1}, a periodic deactivating time108

td ∈ {0, . . . , τ − 1}, a base move (µ, d) ∈ M × N and a (pointwise) speed ν ∈ N.109

CVIT 2016

23:4 Finding Shortest Walks in Kuru Kuru Kururin

▶ Definition 11. A spiked ball is defined as a tuple (r, x, y, τ, t0, (µ, d), ν) which represents110

a disk of radius r ∈ N, the starting coordinates (x, y) ∈ Z2 of the bottom-left corner of the111

square which inscribes the disk outer circle, a time period τ ∈ N, a periodic starting time112

t0 ∈ {0, . . . , τ − 1}, a base move (µ, d) ∈ M × N and a (pointwise) speed ν ∈ N.113

In the presence of pistons and/or spiked balls, a base helirin walk is valid if and only if,114

on top of wall tiles, the helirin never intersects with them during the walk.115

2.3 Other Problems116

▶ Definition 12. Problem SubsetSum.117

Input: Elements a1, . . . , an ∈ N, target B ∈ N.118

Question: Is there a set S ⊆ {1, . . . , n} such that
∑

i∈S ai = B?119

▶ Definition 13. Let V be a set of vertices. A timed arc is a tuple (u, v, t, δ) representing a120

directed arc (u, v) ∈ V 2, a departure time t ∈ Z+ and a travel time δ ∈ N. A point temporal121

graph G is of the form (V, A) where A is a set of timed arcs.122

An interval timed arc is a tuple (u, v, t, t′, δ) representing a directed arc (u, v) ∈ V 2,123

an earliest and a latest departure time t, t′ ∈ Z+ and a travel time δ ∈ N. An interval124

temporal graph G is of the form (V, A) where A is a set of interval timed arcs.125

▶ Definition 14. A temporal walk W in a (point or interval) temporal graph G = (V, A) is a126

sequence of timed arcs ((u1, v1, t1, δ1), . . . , (uk, vk, tk, δk)) such that, for all i ∈ {1, . . . , k − 1},127

vi = ui+1 and ti +δi ≤ ti+1. In the point model, arcs must belong to A. In the interval model,128

for every timed arc (ui, vi, ti, δi) in the walk, there must be an interval timed arc (u, v, t, t′, δ)129

in A such that t ≤ ti ≤ t′. The walk is called restless if t1 = 0 and ti + δi = ti+1 for all i.130

The arrival time of W is (tk + δk).131

▶ Definition 15. Problem (Restless)ForemostTemporalWalk.132

Input: A (point or interval) temporal graph G = (V, A), two vertices u, v ∈ V ,133

a time D ∈ Z+.134

Question: Is there a (restless) temporal walk from u to v with arrival time at most D?135

RestlessForemostTemporalWalk is in P on point temporal graphs [2], whereas it136

is weakly NP-hard on interval temporal graphs [22, 28], even with constant vertex-interval-137

membership-width [6]. ForemostTemporalWalk is in P with both models [5].138

3 Computational Complexity139

In this section, we establish the computational complexity of problem BaseKururin. We140

start from the original problem, then consider several gameplay mechanics one by one and141

study their respective impact on the problem complexity. Omitted proofs are available in142

Appendix A.143

3.1 Base Gameplay144

First, we show that the base problem is in PSPACE.145

▶ Theorem 16. BaseKururin is in PSPACE.146

Indeed, recall that PSPACE = NPSPACE from Savitch’s theorem [25]. So, if there exists a147

valid base helirin walk W = (S0, t0, (µ1, d1), . . . , (µk, dk)), we can find it by guessing moves148

M. Laurent and M. Mallem 23:5

(µi, di) in order, performing them on-the-fly while checking the validity of the corresponding149

walk prefixes. We do so while keeping track of the current base helirin state, and of time150

with a non-negative integer variable, checking that it never goes above D.151

Next, we show that the base problem is NP-hard, regardless of the value of the angular152

speed.153

▶ Theorem 17. BaseKururin is weakly NP-hard even when ω = 0.154

We reduce from weakly NP-hard problem SubsetSum [12]. We take inspiration from the155

NP-hardness proof of problem RestlessForemostTemporalWalk on interval temporal156

graphs by Zeitz [28]. Figure 7 illustrates the created instance of BaseKururin. For each157

choice of element ai in SubsetSum, we have two branching paths: one where you go east158

for 2ai time units, and another where you go north-east from ai time units, then south-east159

for ai time units. Both paths are then merged. Element ai is included in the subset if and160

only if we chose the path going north-east then south-east.161

(. . .)

Figure 7 Layout of the NP-hardness reduction of BaseKururin. The isolated square at the
right represents the single 1 × 1 goal tile

Note that this reduction would work with any angular speed ω: it purely relies on the162

offset between cardinal and diagonal speed values, which gets magnified over time. As such,163

time D needs to be encoded in binary for our reduction to work. In fact, if time D is given164

in unary in the input, then BaseKururin can be solved in polynomial time.165

▶ Theorem 18. BaseKururin is pseudo-polynomial-time solvable.166

We show this by encoding our instance as a point temporal graph with O(D4) ver-167

tices and O(D5) timed arcs. Each accessible center position can be encoded as a tu-168

ple (nN , nNE , nE , nSE) of values in {−D, . . . , D} giving a signed number of unit-time base169

moves in each direction in order to reach it. And timed arcs are of the form (u, v, t, 1),170

where u represents a center position accessible at time t and v represents a center position171

accessible from u with one of the nine unit-time base moves. If N is the number of tiles172

in our instance I of BaseKururin then, in O(D5N) time, we can compute all accessible173

center positions, including whether they are in a goal tile, and compute an equivalent point174

temporal graph GI . Then problem ForemostTemporalWalk can be solved in linear time175

on GI to look for a walk from the starting center position to all accessible center positions in176

goal zones simultaneously [4].177

▶ Remark 19. Conversely, ForemostTemporalWalk on point temporal graphs can be178

reduced to BaseKururin.179

Additionally, in the proof of Theorem 17, note that wall tiles were crucial to enforce specific180

durations for the diagonal base moves which corresponded to the elements in the instance181

of SubsetSum. If there are no such walls then, for each goal tile, one can compute a base182

CVIT 2016

23:6 Finding Shortest Walks in Kuru Kuru Kururin

helirin walk reaching it in minimum duration via an integer linear program with a constant183

number of variables and constraints. We have eight non-negative integer variables indicating184

the number of unit-time base moves in each of the eight directions. We aim to minimize185

their sum while ending the walk in the square goal tile (i.e., with four constraints). Each186

system can be solved in O(1) time (e.g., see [1]), so we can solve our problem in O(N) time.187

▶ Theorem 20. BaseKururin with no wall tiles is polynomial-time solvable.188

3.2 Base Gameplay with Diagonal Speed Restrictions189

In this subsection, we restrict the value of diagonal pointwise speed νdiag such that we cannot190

reuse the trick used to prove the NP-hardness of BaseKururin in Theorem 17. In particular,191

if νdiag ∈ {0, νcard}, then one can no longer create a position offset other than a multiple192

of νcard. In fact, the graph of accessible center positions with unit-time move neighborhood is193

a grid graph, with a four-neighborhood if νdiag = 0 and an eight-neighborhood if νdiag = νcard.194

With such neighborhoods, it is not hard to see that the triangle inequality is satisfied. As195

such, if additionally the helirin does not spin around, then the instance of BaseKururin196

can be easily turned into such grid graphs and solved efficiently. E.g., by using the visibility197

graph induced by the corners of the wall tiles [18, 21, 27], we can solve this particular case198

in O(N2) time.199

▶ Theorem 21. BaseKururin with νdiag ∈ {0, νcard} and ω = 0 is polynomial-time solvable.200

However, if the helirin is allowed to spin around, then we believe that our problem is201

again unlikely to be polynomial-time solvable.202

▶ Conjecture 22. BaseKururin is weakly co-NP-hard even when νdiag ∈ {0, νcard}.203

This would show that both speed offset and rotation independently make our problem204

difficult.205

3.3 Base Gameplay with Spring Tiles206

If spring tiles are available, then the reduction of Theorem 17 can be adapted by using the207

mirroring property to create an angle offset in the rotation of the helirin between branching208

paths. Arbitrary angle offsets can be obtained within constant duration, so this reduction209

does not require time D to be given in binary in the input.210

▶ Theorem 23. BaseKururin augmented with spring tiles is weakly NP-hard even when211

νdiag ∈ {0, νcard} and time D is given in unary.212

Still, the algorithm from Theorem 18 can be adapted if, on top of time D, the denomina-213

tor qω of angular speed factor ω is given in unary in the input. Then the number of vertices214

in the equivalent point temporal graph is in O(D4qω).215

▶ Theorem 24. BaseKururin augmented with spring tiles is pseudo-polynomial-time216

solvable.217

3.4 Base Gameplay With Pistons and Spiked Balls218

If pistons or spiked balls are available, then the algorithm from Theorem 18 can be easily219

adapted with minor time overhead. Indeed, these elements are time-indexed so, at each time,220

their location can easily be determined and taken into account when computing the set of221

accessible center positions.222

M. Laurent and M. Mallem 23:7

▶ Theorem 25. BaseKururin augmented with pistons and spiked balls is pseudo-polynomial-223

time solvable.224

However, having these moving elements makes our problem difficult independently from225

all previous gameplay mechanics - namely speed offset, rotation and spring tiles.226

▶ Theorem 26. BaseKururin augmented with pistons or spiked balls is weakly NP-hard and227

weakly co-NP-hard even when νdiag ∈ {0, νcard}, ω = 0 and half-length ℓ, cardinal speed νcard228

and tile sizes si are given in unary.229

Indeed, note that spiked balls with standstill base moves and pistons with unit-time base230

moves essentially act as periodic on/off switches, with periods written in binary. So, these231

periods can be given exponential values within logarithmic working space [7, 24], which is232

the key ingredient in our reductions. For instance, this allows us to test all valuations of a233

boolean formula - and thus encode both Sat and DNF-Tautology.234

▶ Remark 27. (Restless)ForemostTemporalWalk on interval temporal graphs can be235

reduced to BaseKururin augmented with spiked balls.236

▶ Remark 28. Finally, since the problem is both NP-hard and co-NP-hard, it is unlikely that237

it belongs to either class. Indeed if, e.g., it belonged to NP, then co-NP-complete problem238

DNF-Tautology would also belong to NP. This would mean that NP = co-NP, which239

would imply a collapse of the Polynomial Hierarchy to the second level [26].240

4 Algorithmic Techniques241

In this section, we provide algorithmic techniques aimed at tackling real instances of Kuru242

Kuru Kururin.243

4.1 State Space244

Recall that a base helirin state features a center position (x, y), an angle α, and a boolean b245

indicating whether the helirin is turning counterclockwise. In the actual implementation of246

Kuru Kuru Kururin, these are stored as follows:247

56 bits position: 32 bits for x, 32 bits for y, with the 4 most-significant bits unused in248

practice. The 16 less-significant bits are sub-pixel precision—the position in pixels can be249

retrieved by only reading the 16 most-significant bits,250

16 bits angle (evenly captures the [0, 2π[interval),251

1 bit rotation direction (clockwise / counterclockwise).252

In addition, when colliding with walls, the helirin gets repelled1. This mechanism is253

modeled by adding the following components to the state:254

40 bits bump speed: 32 bits for x, 32 bits for y, with the 12 most-significant bits unused in255

practice. Bump speed is added to the helirin when hitting a wall and decreases with time,256

12 bits rotation speed: 16 bits, with the 4 most-significant bits unused in practice. Rotation257

speed is added to the helirin when hitting a wall, and stabilizes towards the base rotation258

speed with time.259

1 For the sake of simplicity, in Section 2 we did not model this knock-back mechanism, and instead focused
on a variant where collisions with walls are not allowed. Though it is clear that it would make the base
problem more difficult, at least by considering angle offsets in the helirin rotation similarly to springs.

CVIT 2016

23:8 Finding Shortest Walks in Kuru Kuru Kururin

This amounts to a total of 125 bits, i.e., roughly 6 · 1037 states, which would be too260

massive to explore exhaustively. Encoding base helirin states with a temporal graph as in261

Theorem 18 would help in shorter levels, though not nearly enough. Indeed, Kuru Kuru262

Kururin level durations typically range from a couple seconds to a minute, so consider a263

level which can be finished in ten seconds. Since the game runs at roughly sixty frames per264

second, this would still amount to 6004 · 252 ≃ 6 · 1026 states. Consequently, looking for265

optimal resolution by exhaustive search seems impractical. In response, we propose a custom266

implementation of the A* algorithm, which we detail in the next section.267

Note that, for some levels and applications, even more components must be added to the268

state (e.g., hearts and invulnerability frames for non-damageless gameplay as in Section 5.2,269

or the position of the moving objects for maps that contain some). More information about270

the state and how it evolves can be found in the notes of our first tool-assisted speedrun [15].271

4.2 Custom A⋆ Algorithm272

In order to find short walks in spite of the very large state graph, we propose a custom273

implementation of the A* search algorithm. First, a heuristic function is computed by274

computing distance of every point to the target in an approximated variant of the problem275

(we call this heuristic function the “cost map”, Section 4.2.1). Then, this heuristic function276

is used to guide a custom A* search algorithm (Section 4.2.2).277

4.2.1 Cost map278

The heuristic function used to guide the A* search is computed using a Dijkstra algorithm that279

starts at the end of the level and computes, for each state, its distance to the end. However,280

the state space used for this heuristic function is harshly approximated: it assimilates the281

helirin with a point (thus making all angle-related state irrelevant), and ignores movements282

due to the collision with walls (thus eliminating the state related to bump speed). Depending283

on the application, walls can either be considered impassable, or passable under certain284

conditions and at a certain cost (cf. Section 5). In this context, as walls are aligned on pixels,285

the precision of the position can be reduced to the pixel unit, thus saving 32 bits of state.286

The state is thus only composed of the x and y position of 12 bits each, yielding 224 states287

(which is perfectly fine to explore exhaustively).288

This yields a cost map that associates to each pixel of the map a distance to the end of289

the level (or to a custom target). It is then used to guide the A* algorithm for the resolution290

with the full state. This cost map is not necessarily an under-approximation of the real cost,291

as considering the helirin as being punctual allows turning closer to the walls. Consequently,292

we cannot guarantee that the A* search that find an optimal path. Also note that the cost293

map can be multiplied by a constant factor to parametrize the influence it has on the search:294

a factor higher than 1 will often explore fewer states, resulting in a faster resolution but a295

solution that is less optimal.296

4.2.2 Reducing the search space297

The algorithm we use to find a minimal path is based on the A* search algorithm [11] with298

the heuristic function h induced by our cost map:299

1. Let Q be a priority queue. For each starting state s, the pair (s, 0) is added to Q with300

priority h(s).301

2. The pair (s, l) of minimum priority is extracted from Q.302

M. Laurent and M. Mallem 23:9

Figure 8 Map of the first level:
Grasslands 1 (start area, ending area)

Figure 9 Associated cost map
(unpassable walls)

If this is a final state, then the algorithm terminates: a path of length l has been found.303

Otherwise, the successors of s are computed, and for each such successor s′, the pair304

(s′, l + 1) is added to Q with priority l + 1 + h(s). This step is then repeated.305

In practice, this algorithm does not terminate even for simple levels. Thus, we implemented306

two main strategies for reducing the search space.307

Equivalence classes308

A first way to reduce the search space is to define equivalence classes regrouping states that309

are sufficiently similar. This is done by defining a state normalization function n(s) that310

truncates some of the state components to the desired precision (that can be configured311

depending on the application, cf. Section 5). Two states s1 and s2 are in the same equivalence312

class if and only if n(s1) = n(s2).313

Figure 10 Equivalence classes for
position (smaller near the wall on the right)

S1

S2

Eq. class

Figure 11 Path finding: node S2 is
disabled because S1 has been reached first

The searching algorithm is then amended to never explore two states of the same314

equivalence class. For that, it maintains a set of normalized states S: when a state s is315

extracted from the priority queue Q, n(s) is added to S – if it was already present, then s is316

removed from Q without exploring it. This is illustrated by Figure 11.317

Also note that we may want a dynamic resolution for the search: states that are close to318

a wall may benefit from a higher resolution because of the complex dynamic of collisions (in319

particular when solving for unrestricted gameplay, cf. Section 5.2). Thus, our normalization320

function n implements adaptive precision: the closer to a wall a state is, the fewer digits are321

truncated. This is illustrated in Figure 10.322

CVIT 2016

23:10 Finding Shortest Walks in Kuru Kuru Kururin

Piecewise solving323

Another way to reduce the search space is to perform a piecewise solving: checkpoints are324

inserted in the level, fragmenting the map into segments that are solved successively. Once325

a checkpoint has been reached, no other path to this checkpoint will be explored, and the326

search for a path to the next checkpoint starts.327

This strategy can be achieved in two ways. First, it can be achieved by manually328

performing multiple searches: a first one from the starting state to an arbitrary area329

(checkpoint 1), then another search from the resulting state to another area (checkpoint 2),330

and so on. Second, it can be achieved in an automated way by modifying the cost map331

so that reaching a checkpoint area induces a huge decrease of the estimated cost. This is332

illustrated in Figures 12, 13 and 14 where checkpoints have been added on healing areas333

(these are good spots to insert checkpoints as they offer a great mobility: when the helirin is334

in a healing area, it can easily change its angle by hitting a wall without taking damage).335

Figure 12 Map (start area,
healing area, ending area)

Figure 13 Cost map
(no checkpoint)

Figure 14 Cost map
(with checkpoint)

5 Applications336

5.1 Implementation: KuruBot337

The exact physics of the game Kuru Kuru Kururin as well as the path finding algorithm338

described in Section 4 have been implemented in KuruBot [14], a C# application of about339

4000 lines of code. It can also communicate with the emulator BizHawk in order to retrieve340

the current map and state from a live session, find a path, and play it on the emulator.341

Several configurations can be loaded to achieve different goals that we present in this section.342

Figure 15 Interface of KuruBot Figure 16 KuruBot while searching for a
path

M. Laurent and M. Mallem 23:11

5.2 Categories343

Levels can be solved with different constraints (“categories”). The main categories are344

presented below. Solving each category requires using an adapted configuration for KuruBot,345

which are summarized in Figure 17.346

Category Cost map
Resolution

(base, near walls)
Checkpoints

Damageless No wall crossing 2 px, 2 px Automated, at healing areas

Regular intended No wall crossing 2 px, 1 px Automated, at healing areas

Regular unrestricted Wall crossing if hearts > 1 1 px, 1/8 px Manual, short segments

Figure 17 Configuration adapted for each category

Damageless completion347

The damageless completion category consists in finishing every level without taking any348

damage. Note that hitting a wall may still be permitted if the helirin is in a healing zone349

(thus, the bump speed and rotation speed components of the state cannot be neglected). A350

tool-assisted speedrun of this category made using KuruBot is available on TASVideos.org [16].351

Regular completion, intended gameplay352

For regular completion, the helirin is allowed to hit walls, which can be used to walk through353

narrow spaces, to have a boost due to the speed bump, and to change the angle of the354

helirin. When hitting a wall outside a healing area, the helirin looses a heart and becomes355

invulnerable for 20 frames. Thus, the following bits must be added to our state:356

2 bits remaining hearts (max: 3),357

5 bits invulnerability frames (max: 20).358

Regular completion, unrestricted gameplay359

The unrestricted category allows exploiting the physics of the game, in particular the way360

collisions are handled, to break through walls. However, such manipulations are only possible361

for some wall placements, and require a very precise combination of position, angle, and362

bump speed to be performed. Consequently, for this category, the resolution of the solver363

(cf. Section 4.2.2) must be increased (in particular the resolution near walls).364

The cost map computation is also modified: crossing walls is allowed, but at a constant365

cost to account for the number of frames it takes to cross a wall in average (e.g. 10 frames),366

and only if the helirin has at least 2 hearts (otherwise, hitting a wall will lose the level).367

Consequently, two cost maps must be computed: one that will be used when the helirin has368

at least 2 hearts left, and one when it has only one heart (cf. Figures 18 and 19). Positions369

that are inside walls also get a constant cost reduction to account for the fact that these are370

advantageous areas inside which the helirin should stay as long as possible (in particular, the371

helirin can move faster when it is inside a wall). A tool-assisted speedrun of this category372

made using KuruBot is available on TASVideos.org [20].373

CVIT 2016

23:12 Finding Shortest Walks in Kuru Kuru Kururin

Figure 18 Unrestricted gameplay cost
map (with extra hearts)

Figure 19 Unrestricted gameplay cost
map (no extra heart)

Other incentives374

We may want to search for solutions that minimize measures other than the total number of375

frames. For instance, minimizing the number of input changes (i.e. the number of times a376

button must be pressed or released) can also be of interest in order to find humanly-viable377

ways to cross a wall for speedrunners. Such paths have already been found by using KuruBot378

with an adapted configuration [19].379

6 Conclusion380

In this work, we presented an algorithmic and complexity study of Kuru Kuru Kururin,381

a puzzle-action game whose distinctive mechanics naturally give rise to rich shortest-walk382

problems. By formalizing the game’s behavior and progressively extending the model with383

additional mechanics, we revealed how each gameplay element (rotation, speed asymmetries,384

spring tiles, moving objects, etc.) introduces its own source of computational hardness. Our385

results show that even the base problem is weakly NP-hard, and that various mechanics386

independently raise the difficulty to NP-hard or even co-NP-hard levels. Despite these387

hardness results, when time or mechanical constraints are restricted, several variants admit388

pseudo-polynomial-time or even polynomial-time algorithms.389

In the second part of this article, focusing this time on approximate resolution, we390

introduced practical algorithmic techniques, including a state-space reduction strategy and a391

custom A* search guided by approximate cost maps, that enable efficient solving of real game392

levels despite an astronomically large underlying state space. Finally, we implemented these393

ideas in KuruBot, a full physics-accurate path-finding framework capable of exploring a wide394

variety of gameplay settings. Overall, this work bridges complexity theory, temporal graph395

reasoning, and game physics modeling, showing how a charming 2001 Game Boy Advance396

title can serve as a surprisingly deep computational playground.397

Going forward, in the short term we plan to benchmark the performance of our path398

finding algorithm in the presence of the different elements introduced in the complexity399

analysis. Using a level editor that we created [13], we plan to generate multiple levels, each400

focusing on a specific mechanic: base gameplay without diagonal moves, base gameplay401

with diagonal moves, springs, moving objects, etc. The performance on these benchmark402

levels will then be evaluated using a specific configuration of KuruBot, and compared to the403

conclusions of our complexity analysis. Moreover, such levels could also serve as an amusing404

playing field to compare state-of-the-art pathfinding algorithms.405

Finally, in the future, our complexity analysis could be extended to model the whole406

game, including knock-back, the life system and healing areas, as well as the sequels Kururin407

Paradise and Kururin Squash!, hidden gems which were only released in Japan and feature408

even more unique game mechanics to explore.409

M. Laurent and M. Mallem 23:13

References410

1 Nina Amenta, Jesús A De Loera, and Pablo Soberón. Helly’s theorem: new variations and411

applications. Algebraic and geometric methods in discrete mathematics, 685:55–95, 2017.412

2 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient413

computation of optimal temporal walks under waiting-time constraints. Applied Network414

Science, 5(1):73, 2020.415

3 Jeffrey Bosboom, Josh Brunner, Michael J. Coulombe, Erik D. Demaine, Dylan H. Hendrickson,416

Jayson Lynch, and Elle Najt. The legend of zelda: The complexity of mechanics. CoRR,417

abs/2203.17167, 2022. URL: https://doi.org/10.48550/arXiv.2203.17167, arXiv:2203.418

17167, doi:10.48550/ARXIV.2203.17167.419

4 Filippo Brunelli and Laurent Viennot. Computing temporal reachability under waiting-420

time constraints in linear time. In David Doty and Paul Spirakis, editors, 2nd Symposium421

on Algorithmic Foundations of Dynamic Networks (SAND 2023), volume 257 of Leibniz422

International Proceedings in Informatics (LIPIcs), pages 4:1–4:11, Dagstuhl, Germany, 2023.423

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SAND.2023.4.424

5 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and425

foremost journeys in dynamic networks. International Journal of Foundations of Computer426

Science, 14(02):267–285, 2003. doi:10.1142/S0129054103001728.427

6 Justine Cauvi and Laurent Viennot. Parameterized restless temporal path. In Artur Jeż and428

Jan Otop, editors, Fundamentals of Computation Theory, pages 82–93, Cham, 2026. Springer429

Nature Switzerland. doi:10.1007/978-3-032-04700-7_7.430

7 Yiping Cheng. Space-efficient Karatsuba multiplication for multi-precision integers. arXiv431

preprint arXiv:1605.06760, 2016. URL: https://arxiv.org/abs/1605.06760.432

8 Xiao Cui and Hao Shi. Direction oriented pathfinding in video games. International Journal433

of Artificial Intelligence & Applications, 2(4):1, 2011.434

9 Erik D. Demaine, Holden Hall, Hayashi Layers, Ricardo Ruiz, and Naveen Venkat. You435

can’t solve these super mario bros. levels: Undecidable mario games. Theoretical Computer436

Science, 1060:115549, 2026. URL: https://www.sciencedirect.com/science/article/pii/437

S0304397525004876, doi:https://doi.org/10.1016/j.tcs.2025.115549.438

10 MIT Hardness Group, Erik D. Demaine, Holden Hall, and Jeffery Li. Tetris with439

few piece types. Theoretical Computer Science, 1059:115581, 2026. URL: https://www.440

sciencedirect.com/science/article/pii/S0304397525005195, doi:https://doi.org/10.441

1016/j.tcs.2025.115581.442

11 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic443

determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,444

4(2):100–107, 1968. doi:10.1109/TSSC.1968.300136.445

12 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,446

Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.447

13 Mickaël “E-Sh4rk” Laurent and contributors. Repository of ROM-hacking tools for the GBA448

Kururin games, 2021. URL: https://github.com/E-Sh4rk/KuruTools.449

14 Mickaël “E-Sh4rk” Laurent and contributors. Repository of KuruBot and other TAS tools,450

2024. URL: https://github.com/E-Sh4rk/KururinTAS.451

15 Mickaël “E-Sh4rk” Laurent and Maher “mohoc” Mallem. Author notes of the tool-assisted452

speedrun of Kuru Kuru Kururin on TASVideos.org, 2019. URL: https://tasvideos.org/453

6314S.454

16 Mickaël “E-Sh4rk” Laurent and Maher “mohoc” Mallem. Tool-assisted speedrun of Kuru455

Kuru Kururin - baseline category, 2019. URL: https://tasvideos.org/3933M.456

17 Sharmad Rajnish Lawande, Graceline Jasmine, Jani Anbarasi, and Lila Iznita Izhar. A457

systematic review and analysis of intelligence-based pathfinding algorithms in the field of video458

games. Applied Sciences, 12(11), 2022. URL: https://www.mdpi.com/2076-3417/12/11/5499,459

doi:10.3390/app12115499.460

CVIT 2016

https://doi.org/10.48550/arXiv.2203.17167
http://arxiv.org/abs/2203.17167
http://arxiv.org/abs/2203.17167
http://arxiv.org/abs/2203.17167
https://doi.org/10.48550/ARXIV.2203.17167
https://doi.org/10.4230/LIPIcs.SAND.2023.4
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1007/978-3-032-04700-7_7
https://arxiv.org/abs/1605.06760
https://www.sciencedirect.com/science/article/pii/S0304397525004876
https://www.sciencedirect.com/science/article/pii/S0304397525004876
https://www.sciencedirect.com/science/article/pii/S0304397525004876
https://doi.org/https://doi.org/10.1016/j.tcs.2025.115549
https://www.sciencedirect.com/science/article/pii/S0304397525005195
https://www.sciencedirect.com/science/article/pii/S0304397525005195
https://www.sciencedirect.com/science/article/pii/S0304397525005195
https://doi.org/https://doi.org/10.1016/j.tcs.2025.115581
https://doi.org/https://doi.org/10.1016/j.tcs.2025.115581
https://doi.org/https://doi.org/10.1016/j.tcs.2025.115581
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/978-1-4684-2001-2_9
https://github.com/E-Sh4rk/KuruTools
https://github.com/E-Sh4rk/KururinTAS
https://tasvideos.org/6314S
https://tasvideos.org/6314S
https://tasvideos.org/6314S
https://tasvideos.org/3933M
https://www.mdpi.com/2076-3417/12/11/5499
https://doi.org/10.3390/app12115499

23:14 Finding Shortest Walks in Kuru Kuru Kururin

18 Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free paths461

among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.462

19 Maher “mohoc” Mallem. Kuru Kuru Kururin speedrunning guide - pause frame document,463

2024. URL: https://www.speedrun.com/kuru_kuru_kururin/resources/ecdzb.464

20 Maher “mohoc” Mallem. Tool-assisted speedrun of Kuru Kuru Kururin - 100% category, 2024.465

URL: https://tasvideos.org/6116M.466

21 Marcell Missura, Daniel D. Lee, and Maren Bennewitz. Minimal construct: Efficient shortest467

path finding for mobile robots in polygonal maps. In 2018 IEEE/RSJ International Conference468

on Intelligent Robots and Systems (IROS), pages 7918–7923, 2018. doi:10.1109/IROS.2018.469

8594124.470

22 Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks is NP-471

hard. Technical report, Dept. Electrical Engineering, Technion - Israel Institute of Technology,472

Haifa, Israel 32000, 1989.473

23 Sara Lutami Pardede, Fadel Ramli Athallah, Yahya Nur Huda, and Fikri Dzulfiqar Zain.474

A review of pathfinding in game development. CEPAT] Journal of Computer Engineering:475

Progress, Application and Technology, 1(01):47, 2022.476

24 Daniel S. Roche. Space- and time-efficient polynomial multiplication. In Proceedings of the477

2009 International Symposium on Symbolic and Algebraic Computation, ISSAC ’09, page478

295–302, New York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/479

1576702.1576743.480

25 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-481

ities. Journal of Computer and System Sciences, 4(2):177–192, 1970. URL: https://www.482

sciencedirect.com/science/article/pii/S002200007080006X, doi:https://doi.org/10.483

1016/S0022-0000(70)80006-X.484

26 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,485

1976. doi:https://doi.org/10.1016/0304-3975(76)90061-X.486

27 Tansel Uras, Sven Koenig, and Carlos Hernandez. Subgoal graphs for optimal pathfinding487

in eight-neighbor grids. Proceedings of the International Conference on Automated Planning488

and Scheduling, 23(1):224–232, Jun. 2013. URL: https://ojs.aaai.org/index.php/ICAPS/489

article/view/13568, doi:10.1609/icaps.v23i1.13568.490

28 Tim Zeitz. NP-hardness of shortest path problems in networks with non-FIFO time-dependent491

travel times. Information Processing Letters, 179:106287, 2023. doi:https://doi.org/10.492

1016/j.ipl.2022.106287.493

A Complexity Proofs494

A.1 Theorem 17495

Proof. We reduce from weakly NP-hard problem SubsetSum [12]. Let a1, . . . , an be the496

elements and let B be the target. Let A =
∑

1≤i≤n ai and L = 2A + 1.497

We propose the following instance of BaseKururin. We set the helirin properties to498

(ℓ, νcard, νdiag, ω) = (L, 2L, 2L − 1, 0). We set D = 2A + n − 1 and S0 = (L, L, 0, 1). We499

set wall tiles to form the instance illustrated in Figure 7. For each choice of element ai in500

SubsetSum, we have two branching paths: one, which we call Pi,0, where you go east for501

2ai time units, and another, which we call Pi,1, where you go north-east for ai time units,502

then south-east for ai time units. Both paths are then merged. Finally, there is a single 1 × 1503

goal tile at position ((2D + 1)L − 2B, L).504

If our instance of SubsetSum has a solution S ⊆ {1, . . . , n}, we propose base helirin505

walk W where, for all i ∈ {1, . . . , n}, we take path Pi,1 if i ∈ S and path Pi,0 otherwise.506

This walk is valid and ends at position ((2D + 1)L − 2(
∑

i∈S ai), L) = ((2D + 1)L − 2B, L).507

Conversely, if we have a valid base helirin walk W , by our choice for speed values νcard, νdiag508

https://www.speedrun.com/kuru_kuru_kururin/resources/ecdzb
https://tasvideos.org/6116M
https://doi.org/10.1109/IROS.2018.8594124
https://doi.org/10.1109/IROS.2018.8594124
https://doi.org/10.1109/IROS.2018.8594124
https://doi.org/10.1145/1576702.1576743
https://doi.org/10.1145/1576702.1576743
https://doi.org/10.1145/1576702.1576743
https://www.sciencedirect.com/science/article/pii/S002200007080006X
https://www.sciencedirect.com/science/article/pii/S002200007080006X
https://www.sciencedirect.com/science/article/pii/S002200007080006X
https://doi.org/https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/https://doi.org/10.1016/0304-3975(76)90061-X
https://ojs.aaai.org/index.php/ICAPS/article/view/13568
https://ojs.aaai.org/index.php/ICAPS/article/view/13568
https://ojs.aaai.org/index.php/ICAPS/article/view/13568
https://doi.org/10.1609/icaps.v23i1.13568
https://doi.org/https://doi.org/10.1016/j.ipl.2022.106287
https://doi.org/https://doi.org/10.1016/j.ipl.2022.106287
https://doi.org/https://doi.org/10.1016/j.ipl.2022.106287

M. Laurent and M. Mallem 23:15

and time D, only the east, north-east and south-east directions can be used. Therefore,509

according to the position of wall tiles, the underlying path from base helirin walk W is510

necessarily of the form Pi,j1 · · · Pn,jn
with ji ∈ {0, 1} for all i. We propose S = {i ∈511

{1, . . . , n}|ji = 1}. Then, because W is valid and ends at position ((2D + 1)L − 2B, L), we512

have: 2B = 2(
∑

i∈S ai). ◀513

A.2 Remark 19514

The main idea is to keep track of time with the rotation angle. By taking a large enough515

half-length ℓ of the helirin compared to the denominator qω of angular speed factor ω, we516

can discriminate between angles which are multiples of π/qω, e.g., by setting wall tiles in517

a similar way as in the proof of Theorem 23. Using this trick, having the time span of the518

input temporal graph fit within a single half-rotation, we can replicate the layout of the519

input temporal graph, and only make the start and the end of the representation of each520

timed arc available at specific angles - and thus at specific times.521

A.3 Theorem 20522

Proof. We have eight non-negative integer variables (xµ)µ∈M\{∅}, representing the time523

spent going in each of the eight directions. For each goal tile of side length s(i) and bottom-left524

corner coordinates (x(i), y(i)), we propose the following integer linear program:525

minimize
∑

µ∈M\{∅}

xµ

subject to νcard(xE − xW) + νdiag(xNE + xSE − xNW − xSW) ≥ x(i),

νcard(xE − xW) + νdiag(xNE + xSE − xNW − xSW) ≤ x(i) + s(i),

νcard(xN − xS) + νdiag(xNE + xNW − xSE − xSW) ≥ y(i),

νcard(xN − xS) + νdiag(xNE + xNW − xSE − xSW) ≤ y(i) + s(i),

xµ ∈ Z+, µ ∈ M\{∅}.

526

This ensures that we land on the goal tile as soon as possible. We have a constant number527

of variables and constraints, so the system can be solved in O(1) time (e.g., see [1]). Thus, by528

taking the minimum over all goal tiles, we can conclude whether, starting from base helirin529

state S0, there is a valid base helirin walk to a goal tile with duration at most D. ◀530

A.4 Theorem 23531

Proof. (Sketch.) We reduce from weakly NP-hard problem SubsetSum [12]. Let a1, . . . , an532

be the elements and let B be the target. Let A =
∑

1≤i≤n ai and L = 16(A + 2n + 1).533

We propose a similar reduction to the proof of Theorem 17, except we rely on rotation534

angle offsets instead of position offsets. We set D = 6n + 1, qω = L/2 and pω = 1 + qω/8. We535

set the helirin properties to (ℓ, νcard, νdiag, ω) = (L, 2L, 0, pω/qω) and we set S0 = (L, L, 0, 1).536

We set wall tiles to form the instance illustrated in Figure 20. For each choice of element ai537

in SubsetSum, we have two branching paths: one, which we call Pi,0, where you go south,538

then east for 2 time units, then north, and another, which we call Pi,1, where you go north,539

then east for 2 time units, then south. Both paths are then merged. Plus, there is a single540

2L × 2L goal tile at position ((4n + 1)2L, 0).541

Now, let P = {0, . . . , qω/2}. Given p ∈ P, let (xp, yp) be the coordinates of the right542

extremity of the helirin at angle pπ/qω. Since L > 2qω/
√

2, function (p 7→ (xp, yp)) is543

injective over P, and sequences (xp)p∈P and (yp)p∈P are respectively non-decreasing and544

CVIT 2016

23:16 Finding Shortest Walks in Kuru Kuru Kururin

(. . .)

Figure 20 Layout of the NP-hardness reduction with spring tiles. The isolated square at the left
of the goal tile is a wall tile which is part of the angle check gadget, which only allows for angle
(B + 2n)π/8L.

non-increasing. Plus, for each p ∈ P, couple (xp, yp) is merely a rational approximation of545

the cosine and sine of angle pπ/qω, and thus can be computed in polynomial time.546

Knowing this, we can use these values to position our spring tiles accordingly. In bottom547

paths Pi,0, we rely on numerator (p = qω/4+1) to align the edges with the mirroring property.548

In bottom paths Pi,1, we rely on numerator (p = qω/4 + 1 − ai) instead. And, once both549

paths are merged, we rely on numerator (p = −qω/8). Finally, right before the goal tile, we550

set two wall tiles in order to block positions (xp, yp) for every p ∈ P\{B + 2n}. Then the551

correspondence between valid base helirin walks and solutions of the SubsetSum instance552

unfolds similarly to the proof of Theorem 17. Finally, one can easily adapt the reduction to553

case νdiag = νcard.554

◀555

A.5 Theorem 26556

We detail proofs which make use of spiked balls with standstill base moves. In both of them,557

we set the helirin properties to (ℓ, νcard, νdiag, ω) = (1, 2, 0, 0) and base helirin state S0 to558

(x, y, α, b) = (1, 1, 0, 0). Plus, all spiked balls will have radius 1, µ = ∅ in their base move,559

and ν = 1. So, all relevant elements will be set along a grid of 2 × 2 squares.560

NP-hardness561

Proof. We reduce from 3-Sat. Let φ =
∧

1≤i≤m(li,1 ∨ li,2 ∨ li,3) be a 3-CNF formula with562

m clauses and n variables, w.l.o.g. with exactly three literals per clause. We encode the563

formula as an obstacle course going from left to right. Figure 21 represents the base layout,564

which can be easily obtained with square wall tiles. Each vertical layer represents a clause565

and has three available ways, each associated to a literal in this clause. And we set a single566

goal tile of side length 2 at (x, y) = (4m + 4, 0). Then, going from the start area (in red) to567

the goal tile (in yellow) with no wait takes time at most T = 6m + 6.568

The plan is to dedicate time T for each of the 2n valuations of the variables to give them569

a chance to reach the goal tile from the start, which will correspond to making φ true. First,570

we only allow the helirin to leave the start area at periodic times (1 mod T). We do so571

with a spiked ball at (x, y) = (2, 0) with τ = T, t0 = 2 and d = T − 1. Plus, once the helirin572

leaves the start area, we force it to reach the goal tile by the end of the time period. We do573

so by setting spiked balls for every 2 ≤ i ≤ 2m + 2 and 0 ≤ j ≤ 4 at (x, y) = (2i, 2j) with574

τ = T, t0 = 0 and d = 1.575

M. Laurent and M. Mallem 23:17

S1,2

S1,3

S2,1

S2,2

Figure 21 Layout of the NP-hardness reduction with spiked balls, illustrated with input formula
φ = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4). We are at time ∆ + 1, i.e., about to check valuation
(x4, x3, x2, x1) = (0, 0, 0, 1), which makes φ true by choosing literals x1 then ¬x4.

Now, for 1 ≤ k ≤ n we tie variable xk to spiked balls of time period τ = T2k. More576

precisely, given 1 ≤ i ≤ m and 1 ≤ j ≤ 3, we set a spiked ball Si,j at x = 4i + 2 and577

y = 4j − 4, with move duration d = T2k−1 and:578

if li,j = xk is a positive literal: τ = T2k, t0 = 0, d = T2k−1,579

if li,j = ¬xk is a negative literal: τ = T2k, t0 = d = T2k−1.580

In other words, spiked balls tied to literal xk (resp. ¬xk) block their respective path during581

periodic times (0, . . . , T2k−1 − 1 mod T2k) (resp. (T2k−1, . . . , T2k − 1 mod T2k)).582

We now piece everything together. Let us consider valuations (xn, . . . , x1) by lexicographic583

order. Given 0 ≤ h ≤ 2n − 1, let vh be the hth valuation by lexicographic order. Then,584

vh matches with the binary representation of h from the right (e.g., the value of x1 in vh is585

the last digit). Knowing this, consider time units Th, . . . , T (h + 1) − 1. During them, by the586

definition of spiked balls Si,j , the latter block their respective path if and only if:587

li,j = xk and the (k − 1)th digit of h from the right is 0, or588

li,j = ¬xk and the (k − 1)th digit of h from the right is 1.589

Thus the missing spiked balls Si,j exactly correspond to the literals which are made true by590

valuation vh. As a result, starting from time Th, we can reach the goal tile by time T (h+1) if591

and only if vh makes φ true. Finally, we have that φ is satisfiable if and only if, starting from592

base helirin state S0, there is a base helirin walk reaching the goal tile by time D = T 2n. ◀593

co-NP-hardness594

Proof. We reduce from 3-DNF-Tautology. Let φ =
∨

1≤i≤m(li,1 ∧ li,2 ∧ li,3) be a 3-DNF595

formula with m conjunctions and n variables, again w.l.o.g. with exactly three literals per596

conjunction. We encode the formula as an obstacle course going from left to right with597

parallel subpaths, one per conjunction in φ. Then, instead of reaching a goal tile, we allow598

the helirin to loop back to the start area. Figure 22 represents the base layout, which can be599

easily obtained with square wall tiles.600

The plan is to dedicate time T for each of the 2n valuations of the variables, this time601

forcing each one of them to loop through the structure, essentially choosing a subpath - i.e.,602

CVIT 2016

23:18 Finding Shortest Walks in Kuru Kuru Kururin

S′
0

S0SG S1,1

S2,2 S2,3

Figure 22 Layout of the co-NP-hardness reduction with spiked balls, illustrated with input
formula φ = (¬x1 ∧ ¬x2 ∧ ¬x4) ∨ (x1 ∧ x3 ∧ x4). We are at time T + 1, i.e., about to check valuation
(x4, x3, x2, x1) = (0, 0, 0, 1), which makes φ false.

a conjunction in φ. First, we set T = 4m + 6, D = T2n + 2 and set a spiked ball SG at603

(x, y) = (−2, 0) with τ = D, t0 = 0 and d = D − 2. Then, at the beginning of each period,604

we force the helirin to leave the start area and head to the right. We do so with two more605

spiked balls:606

S0 at (x, y) = (0, 0) with τ = T, t0 = 1 and d = T − 1,607

S′
0 at (x, y) = (0, 2) with τ = T, t0 = 0 and d = 2.608

Plus, we force the helirin to reach the end of our loop by the end of each time period. We do609

so by setting spiked balls for every couple (i, j) ∈ {0, . . . , 6} × {0, . . . , 2m + 1}\{(0, 0), (0, 1)}610

at (x, y) = (2i, 2j) with τ = T, t0 = T − 1 and d = 2. Then, other than time D − 1, the611

helirin is necessarily at positions (1, 3), (1, 1), (3, 1) at respective periodic times (T − 1, 0, 1612

mod T).613

Now, for 1 ≤ k ≤ n we tie variable xk to spiked balls of time period τ = T2k. More614

precisely, given 1 ≤ i ≤ m and 1 ≤ j ≤ 3, we set a spiked ball Si,j at x = 2j + 4 and615

y = 4i − 4, with move duration d = T2k−1 and:616

if li,j = xk is a positive literal: τ = T2k, t0 = 0, d = T2k−1,617

if li,j = ¬xk is a negative literal: τ = T2k, t0 = d = T2k−1.618

Then, we have the same correspondence as in the previous proof between spiked ball619

appearances and valuations considered by lexicographic order. So, starting from time Th with620

0 ≤ h ≤ 2n − 1, we can reach position (1, 3) by time T (h + 1) if and only if the hth valuation621

vh by lexicographic order makes φ true. Thus, we have that φ is a tautology if and only622

if, starting from base helirin state S0, there is a base helirin walk reaching the goal tile by623

time D. ◀624

Finally, it is clear that both reductions also work if νdiag = νcard. Furthermore, the role625

of spiked balls with standstill base moves can be easily achieved using pistons with unit-time626

moves. Indeed, given such a spiked ball (1, x, y, τ, t0, (∅, d), 1), it blocks the square delimited627

by cells (x, y) and (x + 2, y + 2) in periodic times (t0, . . . t0 + d − 1 mod τ). So, e.g., we can628

define piston (2, x, −2, τ, t0, t0 + d, (N, 1), y + 2) to achieve the same result - i.e., when it is629

M. Laurent and M. Mallem 23:19

inactive it is completely out of the way, and when it is active it blocks the square delimited630

by cells (x, y) and (x + 2, y + 2).631

A.6 Remark 27632

Instead of using rotation angles and wall tiles to keep track of time like in Appendix A.2,633

similarly to the proofs of Theorem 26, we use spiked balls with standstill base moves to set634

intervals of time at which each edge in the underlying static graph is available. Furthermore,635

we use moving spiked balls along the representation of each edge in order to dictate exactly636

the travel time of the helirin along this edge. Not only does this allow us to encode interval637

temporal graphs, it can also be used to restrict the waiting time of the helirin at each vertex.638

CVIT 2016

	1 Introduction
	2 Preliminaries
	2.1 Base Gameplay
	2.2 Additional Gameplay Mechanics
	2.3 Other Problems

	3 Computational Complexity
	3.1 Base Gameplay
	3.2 Base Gameplay with Diagonal Speed Restrictions
	3.3 Base Gameplay with Spring Tiles
	3.4 Base Gameplay With Pistons and Spiked Balls

	4 Algorithmic Techniques
	4.1 State Space
	4.2 Custom A* Algorithm
	4.2.1 Cost map
	4.2.2 Reducing the search space

	5 Applications
	5.1 Implementation: KuruBot
	5.2 Categories

	6 Conclusion
	A Complexity Proofs
	A.1 Theorem 17
	A.2 Remark 19
	A.3 Theorem 20
	A.4 Theorem 23
	A.5 Theorem 26
	A.6 Remark 27

