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—— Abstract

This paper serves as a celebration of the twenty-fifth anniversary of Kuru Kuru Kururin. Although

this video game is presented as a collection of two-dimensional puzzles based on rotation, it naturally
invites players to complete its levels as quickly as possible. This has led to a surprisingly rich and
challenging playing field to finding foremost temporal walks. In this work, we tackle this problem
both in theory and in practice. First, we introduce a model for the game and provide an in-depth
complexity analysis. Most notably, we show how each gameplay mechanic independently brings a
layer of NP-hardness and/or co-NP-hardness. We also provide a pseudo-polynomial time algorithm
for the general problem and identify several cases which can be solved in polynomial time. Along
the way, we discuss connections to the more established framework of temporal graphs, both in the
point model and the interval model. Then, we propose simple and flexible algorithmic techniques
to reduce state space and guide the search, offering trade-offs between precision and computation
speed in practice. These techniques were implemented and tested using a full recreation of the game
physics and the levels from the original game. We demonstrate the efficiency of our framework in
several settings - with or without taking damage, with or without unintended game mechanics -
and relate empirical struggles which we encountered in practice to our complexity analysis. Our
implementation is open source and fully available online, offering a novel and amusing setting to
benchmark shortest path algorithms.

2012 ACM Subject Classification Theory of computation — Problems, reductions and completeness;
Theory of computation — Shortest paths

Keywords and phrases shortest path, complexity

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Kuru Kuru Kururin is a video game published by Nintendo for the Game Boy Advance in
2001. This game is composed of a succession of levels, in which the player (the helirin) has
to walk through a maze, from the start area to (one of the) ending area(s).

.J'r:"—-',
Figure 1 The helirin never Figure 2 When hitting a Figure 3 ...and is repelled
stops rotating (here, clockwise) wall, it loses a heart... (both in position and angle)

While studying the computational complexity of video games is nothing new (e.g.,
see [3, 9, 10] for classic video game series and [8, 17, 23] for pathfinding in video games), this
game is unique in that the helirin constantly spins around at a fixed angular speed. The
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player cannot control its rotation speed, but can move the helirin up, down, left, right, and
diagonally at three possible speeds (slow, medium, or fast). The helirin initially has three
hearts. When the helirin hits a wall, it loses one heart and gets repelled (both in position
and angle) as shown in Figures 1, 2 and 3. When reaching zero hearts, the level must be
restarted from the start area. The level may contain some healing areas, which restore all
hearts and prevent the helirin from taking damage. The starting area also has this effect.

Some additional mechanics are introduced in later levels. For instance, springs that
reverse the direction of rotation of the helirin (clockwise / counterclockwise) when hit, or
moving objects (pistons and spiked balls) that follow a predefined path and must be avoided
(cf. Figures 4, 5 and 6).

Figure 4 Some moving Figure 5 The helirin hits a Figure 6 ...which reverses its
pistons and springs spring... rotation direction

This paper is organized as follows. In Section 2, we propose a simplified model of the
base gameplay, and extend it with additional mechanics (springs and moving objects). Then,
we study complexity of each variant in Section 3. Section 4 then studies the actual game
implementation and shows how to design an approximate path finding algorithm despite
the gigantic number of states. Finally, in Section 5 we introduce KuruBot, our path-finder
implementation for Kuru Kuru Kururin, then we elaborate on how it can be configured to
achieve different goals.

2 Preliminaries

» Definition 1. N, Z, and Q are respectively defined as the set of positive integers, integers
and rational numbers. Z+ and QT are respectively defined as the set of non-negative integers
and non-negative rational numbers.

2.1 Base Gameplay

» Definition 2. A helirin H is defined as a tuple (¢, Veard, Vdiag, w) which represents a
half-length £ € N a cardinal speed Veqarqa € N a diagonal pointwise speed v4iaqg € N and an
angular speed wm, w € Q7.

» Definition 3. A base helirin state S is defined as a tuple (x,y,a,b) representing a
center position (x,y) € Z2, an angle am € Qm, 0 < a < 1 and a boolean b € {0, 1} indicating
whether the helirin is turning counterclockwise.

We treat angles modulo 7. Like in the unit circle, angles are measured from segment
[(0,0), (0,1)] and increase as you turn counterclockwise. By default, we assume that a helirin
is turning counterclockwise - i.e., b = 1.

» Definition 4. The base moveset M is {0, N NE,E,SE,S,SW,W,NW}, i.e., a stand-
still and the eight cardinal and diagonal directions “north”, “north-east”; etc..
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A base move is a couple (u,d) € M x N where d is the duration of the move.

During a move, the helirin is constantly spinning around by an angle wm (resp. —wm) per
time unit if it is turning counterclockwise (resp. clockwise).

» Definition 5. A base helirin walk W = (S, to, (u1,d1), - -, (uk,dg)) is a sequence of
base moves from an initial state Sy and time ty. The duration of walk W is defined as

» Definition 6. Let s € N. A tile is a s X s square in the plane which can interact with the
helirin. The base tileset ¥ features a goal tile kind, which only interacts with the center of
the helirin, and wall tile kinds, which forbid a polygonal zone within the tile to intersect with
any part of the helirin. There are five of them here: the plain square, and the four triangles
filling half of the square.

A base tile is a tuple (k,s,z,y) € ¥ x N X Z X Z where k is the tile kind, s is the side
length and (x,y) are the coordinates of the bottom-left corner of the s X s square.

We allow tiles to overlap each other. Plus, like in Kuru Kuru Kururin, we consider that
goal tiles have priority over wall tiles. In other words, collisions with wall tiles are ignored if
the center of the helirin is in a goal tile.

» Definition 7. A base helirin state S is said to be valid if and only if the helirin does not
intersect with a forbidden square of a wall tile. A base helirin walk W is said to be valid if
and only if all intermediate states during the walk are valid.

» Definition 8. Problem BASEKURURIN.

INPUT: A helirin H, a set of base tiles T = {(k1,81,%1,91),---, (KN, SN, TN, YN)}, @ base
helirin state Sy, times to, D € Z7T.

QUESTION: Starting from state Sg and time tg, is there a valid base helirin walk to a goal
tile of duration at most D?

Let N be the number of tiles. For the sake of simplicity, in the rest of the paper, we
assume that we have pre-implemented routines to check whether a given base helirin state is
valid in O(N) time, and whether a given base helirin walk is valid in polynomial time.

2.2 Additional Gameplay Mechanics

» Definition 9. A segment in the plane has the mirroring property if the following behavior
occurs. Let q be the denominator of angular speed factor w. If any part of the helirin would
intersect the helirin after a unit-time move, the helirin rotation is reverted back by steps of
1/q until it no longer intersects with the spring tile edge - say, after an angle p/q. Then the
rotation is reverted back by an additional angle p/q, and the helirin now turns the other way
around.

A spring tile is a tile where exactly one edge of the square has the mirroring property.

When BASEKURURIN is augmented with spring tiles, four tile kinds are added to base tile-
set X: one for each choice of edge which has the mirroring property.

» Definition 10. A piston is defined as a tuple (s,%,y, T, ton, tog, (i, d), V) which represents
a square of side length s € N, the starting coordinates (x,y) € Z* of the bottom-left corner, a
time period T € N, a periodic activating time t, € {0,...,7 — 1}, a periodic deactivating time
ta €40,...,7 =1}, a base move (u,d) € M x N and a (pointwise) speed v € N.
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» Definition 11. A spiked ball is defined as a tuple (r,x,y,T,to, (1, d),v) which represents
a disk of radius r € N, the starting coordinates (x,y) € Z* of the bottom-left corner of the
square which inscribes the disk outer circle, a time period T € N, a periodic starting time
to €{0,...,7 — 1}, a base move (u,d) € M x N and a (pointwise) speed v € N.

In the presence of pistons and/or spiked balls, a base helirin walk is valid if and only if,
on top of wall tiles, the helirin never intersects with them during the walk.

2.3 Other Problems

» Definition 12. Problem SUBSETSUM.
INPUT: Elements aq,...,a, € N, target B € N.

QUESTION: Is there a set S C {1,...,n} such that > ., qa; = B?

€S
» Definition 13. Let V' be a set of vertices. A timed arc is a tuple (u,v,t,d) representing a
directed arc (u,v) € V2, a departure time t € Z* and a travel time § € N. A point temporal
graph G is of the form (V, A) where A is a set of timed arcs.

An interval timed arc is a tuple (u,v,t,t',0) representing a directed arc (u,v) € V2,
an earliest and a latest departure time t,t' € Z© and a travel time § € N. An interval
temporal graph G is of the form (V, A) where A is a set of interval timed arcs.

» Definition 14. A temporal walk W in a (point or interval) temporal graph G = (V, A) is a
sequence of timed arcs ((uy,v1,t1,01), ..., (Ug, Uk, tk, Ox)) such that, for alli € {1,...,k—1},
vy = Ujp1 and t;+0; < tip1. In the point model, arcs must belong to A. In the interval model,
for every timed arc (u;, v;,t;,0;) in the walk, there must be an interval timed arc (u,v,t,t',0)
in A such that t <t; <t'. The walk is called restless if t =0 and t; + 0; = t;+1 for all i.
The arrival time of W is (tx + dk).

» Definition 15. Problem (RESTLESS)FOREMOSTTEMPORALWALK.

INPUT: A (point or interval) temporal graph G = (V,A), two vertices u,v € V,
a time D € Z+.

QUESTION: Is there a (restless) temporal walk from u to v with arrival time at most D%

RESTLESSFOREMOSTTEMPORALWALK is in P on point temporal graphs [2], whereas it
is weakly NP-hard on interval temporal graphs [22, 28], even with constant vertex-interval-
membership-width [6]. FOREMOSTTEMPORALWALK is in P with both models [5].

3 Computational Complexity

In this section, we establish the computational complexity of problem BASEKURURIN. We
start from the original problem, then consider several gameplay mechanics one by one and
study their respective impact on the problem complexity. Omitted proofs are available in
Appendix A.

3.1 Base Gameplay
First, we show that the base problem is in PSPACE.
» Theorem 16. BASEKURURIN is in PSPACE.

Indeed, recall that PSPACE = NPSPACE from Savitch’s theorem [25]. So, if there exists a
valid base helirin walk W = (S, to, (1,d1), - - -, (1tk, dx)), we can find it by guessing moves
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(ui,d;) in order, performing them on-the-fly while checking the validity of the corresponding
walk prefixes. We do so while keeping track of the current base helirin state, and of time
with a non-negative integer variable, checking that it never goes above D.

Next, we show that the base problem is NP-hard, regardless of the value of the angular
speed.

» Theorem 17. BASEKURURIN is weakly NP-hard even when w = 0.

We reduce from weakly NP-hard problem SUBSETSUM [12]. We take inspiration from the
NP-hardness proof of problem RESTLESSFOREMOSTTEMPORALWALK on interval temporal
graphs by Zeitz [28]. Figure 7 illustrates the created instance of BASEKURURIN. For each
choice of element a; in SUBSETSUM, we have two branching paths: one where you go east
for 2a; time units, and another where you go north-east from a; time units, then south-east
for a; time units. Both paths are then merged. Element qa; is included in the subset if and
only if we chose the path going north-east then south-east.

0‘00%0‘0‘00%0‘0‘0’ 000‘%0‘0‘0’%0‘00 $059.0.9.9.0.9:9,
RRIXRRKIKRRRIKS RRRHKRK

<
(000, 0.9.0.0.90.9.9,
RIS

RRRLRLLKS
0‘0‘0.0‘0‘0‘0.0

Figure 7 Layout of the NP-hardness reduction of BASEKURURIN. The isolated square at the
right represents the single 1 x 1 goal tile

Note that this reduction would work with any angular speed w: it purely relies on the
offset between cardinal and diagonal speed values, which gets magnified over time. As such,
time D needs to be encoded in binary for our reduction to work. In fact, if time D is given
in unary in the input, then BASEKURURIN can be solved in polynomial time.

» Theorem 18. BASEKURURIN is pseudo-polynomial-time solvable.

We show this by encoding our instance as a point temporal graph with O(D*) ver-
tices and O(D®) timed arcs. Each accessible center position can be encoded as a tu-
ple (ny,nNnE,nE,nsg) of values in {—D, ..., D} giving a signed number of unit-time base
moves in each direction in order to reach it. And timed arcs are of the form (u,v,t,1),
where u represents a center position accessible at time t and v represents a center position
accessible from u with one of the nine unit-time base moves. If N is the number of tiles
in our instance I of BASEKURURIN then, in O(D?N) time, we can compute all accessible
center positions, including whether they are in a goal tile, and compute an equivalent point
temporal graph G;. Then problem FOREMOSTTEMPORALWALK can be solved in linear time
on G; to look for a walk from the starting center position to all accessible center positions in
goal zones simultaneously [4].

» Remark 19. Conversely, FOREMOSTTEMPORALWALK on point temporal graphs can be
reduced to BASEKURURIN.

Additionally, in the proof of Theorem 17, note that wall tiles were crucial to enforce specific
durations for the diagonal base moves which corresponded to the elements in the instance
of SUBSETSUM. If there are no such walls then, for each goal tile, one can compute a base
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helirin walk reaching it in minimum duration via an integer linear program with a constant
number of variables and constraints. We have eight non-negative integer variables indicating
the number of unit-time base moves in each of the eight directions. We aim to minimize
their sum while ending the walk in the square goal tile (i.e., with four constraints). Each
system can be solved in O(1) time (e.g., see [1]), so we can solve our problem in O(N) time.

» Theorem 20. BASEKURURIN with no wall tiles is polynomial-time solvable.

3.2 Base Gameplay with Diagonal Speed Restrictions

In this subsection, we restrict the value of diagonal pointwise speed vg;qq such that we cannot
reuse the trick used to prove the NP-hardness of BASEKURURIN in Theorem 17. In particular,
if Vagiag € {0, Veara}, then one can no longer create a position offset other than a multiple
of Veqrq. In fact, the graph of accessible center positions with unit-time move neighborhood is
a grid graph, with a four-neighborhood if v4;,4 = 0 and an eight-neighborhood if Vgiag = Veard-
With such neighborhoods, it is not hard to see that the triangle inequality is satisfied. As
such, if additionally the helirin does not spin around, then the instance of BASEKURURIN
can be easily turned into such grid graphs and solved efficiently. E.g., by using the visibility
graph induced by the corners of the wall tiles [18, 21, 27], we can solve this particular case
in O(N?) time.

» Theorem 21. BASEKURURIN with Vgiqg € {0, Veara} and w = 0 is polynomial-time solvable.

However, if the helirin is allowed to spin around, then we believe that our problem is
again unlikely to be polynomial-time solvable.

» Conjecture 22. BASEKURURIN is weakly co-NP-hard even when vgiqg € {0, Veard}-

This would show that both speed offset and rotation independently make our problem
difficult.

3.3 Base Gameplay with Spring Tiles

If spring tiles are available, then the reduction of Theorem 17 can be adapted by using the
mirroring property to create an angle offset in the rotation of the helirin between branching
paths. Arbitrary angle offsets can be obtained within constant duration, so this reduction
does not require time D to be given in binary in the input.

» Theorem 23. BASEKURURIN augmented with spring tiles is weakly NP-hard even when
Vdiag € {0, Veara} and time D is given in unary.

Still, the algorithm from Theorem 18 can be adapted if, on top of time D, the denomina-
tor g, of angular speed factor w is given in unary in the input. Then the number of vertices
in the equivalent point temporal graph is in O(D%q,).

» Theorem 24. BASEKURURIN augmented with spring tiles is pseudo-polynomial-time
solvable.

3.4 Base Gameplay With Pistons and Spiked Balls

If pistons or spiked balls are available, then the algorithm from Theorem 18 can be easily
adapted with minor time overhead. Indeed, these elements are time-indexed so, at each time,
their location can easily be determined and taken into account when computing the set of
accessible center positions.
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» Theorem 25. BASEKURURIN augmented with pistons and spiked balls is pseudo-polynomial-
time solvable.

However, having these moving elements makes our problem difficult independently from
all previous gameplay mechanics - namely speed offset, rotation and spring tiles.

» Theorem 26. BASEKURURIN augmented with pistons or spiked balls is weakly NP-hard and
weakly co-NP-hard even when vgiag € {0, Veara}, w = 0 and half-length £, cardinal speed Veqra
and tile sizes s; are given in unary.

Indeed, note that spiked balls with standstill base moves and pistons with unit-time base
moves essentially act as periodic on/off switches, with periods written in binary. So, these
periods can be given exponential values within logarithmic working space [7, 24], which is
the key ingredient in our reductions. For instance, this allows us to test all valuations of a
boolean formula - and thus encode both SAT and DNF-TAUTOLOGY.

» Remark 27. (RESTLESS)FOREMOSTTEMPORALWALK on interval temporal graphs can be
reduced to BASEKURURIN augmented with spiked balls.

» Remark 28. Finally, since the problem is both NP-hard and co-NP-hard, it is unlikely that
it belongs to either class. Indeed if, e.g., it belonged to NP, then co-NP-complete problem
DNF-TAauTOoLOGY would also belong to NP. This would mean that NP = co-NP, which
would imply a collapse of the Polynomial Hierarchy to the second level [26].

4  Algorithmic Techniques

In this section, we provide algorithmic techniques aimed at tackling real instances of Kuru
Kuru Kururin.

4.1 State Space

Recall that a base helirin state features a center position (z,y), an angle «, and a boolean b
indicating whether the helirin is turning counterclockwise. In the actual implementation of
Kuru Kuru Kururin, these are stored as follows:

56 bits position: 32 bits for x, 32 bits for y, with the 4 most-significant bits unused in
practice. The 16 less-significant bits are sub-pixel precision—the position in pixels can be
retrieved by only reading the 16 most-significant bits,

16 bits angle (evenly captures the [0, 27[ interval),

1 bit rotation direction (clockwise / counterclockwise).

In addition, when colliding with walls, the helirin gets repelled'. This mechanism is
modeled by adding the following components to the state:
40 bits bump speed: 32 bits for x, 32 bits for y, with the 12 most-significant bits unused in
practice. Bump speed is added to the helirin when hitting a wall and decreases with time,
12 bits rotation speed: 16 bits, with the 4 most-significant bits unused in practice. Rotation
speed is added to the helirin when hitting a wall, and stabilizes towards the base rotation
speed with time.

1 For the sake of simplicity, in Section 2 we did not model this knock-back mechanism, and instead focused
on a variant where collisions with walls are not allowed. Though it is clear that it would make the base
problem more difficult, at least by considering angle offsets in the helirin rotation similarly to springs.
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This amounts to a total of 125 bits, i.e., roughly 6 - 1037 states, which would be too

massive to explore exhaustively. Encoding base helirin states with a temporal graph as in
Theorem 18 would help in shorter levels, though not nearly enough. Indeed, Kuru Kuru
Kururin level durations typically range from a couple seconds to a minute, so consider a
level which can be finished in ten seconds. Since the game runs at roughly sixty frames per
second, this would still amount to 600* - 252 ~ 6 - 1026 states. Consequently, looking for
optimal resolution by exhaustive search seems impractical. In response, we propose a custom
implementation of the A* algorithm, which we detail in the next section.

Note that, for some levels and applications, even more components must be added to the
state (e.g., hearts and invulnerability frames for non-damageless gameplay as in Section 5.2,
or the position of the moving objects for maps that contain some). More information about
the state and how it evolves can be found in the notes of our first tool-assisted speedrun [15].

4.2 Custom A* Algorithm

In order to find short walks in spite of the very large state graph, we propose a custom
implementation of the A* search algorithm. First, a heuristic function is computed by
computing distance of every point to the target in an approximated variant of the problem
(we call this heuristic function the “cost map”, Section 4.2.1). Then, this heuristic function
is used to guide a custom A* search algorithm (Section 4.2.2).

4.2.1 Cost map

The heuristic function used to guide the A* search is computed using a Dijkstra algorithm that
starts at the end of the level and computes, for each state, its distance to the end. However,
the state space used for this heuristic function is harshly approximated: it assimilates the
helirin with a point (thus making all angle-related state irrelevant), and ignores movements
due to the collision with walls (thus eliminating the state related to bump speed). Depending
on the application, walls can either be considered impassable, or passable under certain
conditions and at a certain cost (cf. Section 5). In this context, as walls are aligned on pixels,
the precision of the position can be reduced to the pixel unit, thus saving 32 bits of state.
The state is thus only composed of the x and y position of 12 bits each, yielding 22* states
(which is perfectly fine to explore exhaustively).

This yields a cost map that associates to each pixel of the map a distance to the end of
the level (or to a custom target). It is then used to guide the A* algorithm for the resolution
with the full state. This cost map is not necessarily an under-approximation of the real cost,
as considering the helirin as being punctual allows turning closer to the walls. Consequently,
we cannot guarantee that the A* search that find an optimal path. Also note that the cost
map can be multiplied by a constant factor to parametrize the influence it has on the search:
a factor higher than 1 will often explore fewer states, resulting in a faster resolution but a
solution that is less optimal.

4.2.2 Reducing the search space

The algorithm we use to find a minimal path is based on the A* search algorithm [11] with

the heuristic function h induced by our cost map:

1. Let @ be a priority queue. For each starting state s, the pair (s,0) is added to Q with
priority h(s).

2. The pair (s,1) of minimum priority is extracted from Q.
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Figure 8 Map of the first level: Figure 9 Associated cost map
Grasslands 1 (start area, ) (unpassable walls)

If this is a final state, then the algorithm terminates: a path of length [ has been found.

Otherwise, the successors of s are computed, and for each such successor s, the pair
(s',1+1) is added to @ with priority [ + 1 + h(s). This step is then repeated.

In practice, this algorithm does not terminate even for simple levels. Thus, we implemented
two main strategies for reducing the search space.

Equivalence classes

A first way to reduce the search space is to define equivalence classes regrouping states that
are sufficiently similar. This is done by defining a state normalization function n(s) that
truncates some of the state components to the desired precision (that can be configured
depending on the application, cf. Section 5). Two states s; and sq are in the same equivalence
class if and only if n(s1) = n(s2).

Figure 10 Equivalence classes for Figure 11 Path finding: node S2 is
position (smaller near the wall on the right) disabled because S1 has been reached first

The searching algorithm is then amended to never explore two states of the same
equivalence class. For that, it maintains a set of normalized states S: when a state s is
extracted from the priority queue @, n(s) is added to S — if it was already present, then s is
removed from @) without exploring it. This is illustrated by Figure 11.

Also note that we may want a dynamic resolution for the search: states that are close to
a wall may benefit from a higher resolution because of the complex dynamic of collisions (in
particular when solving for unrestricted gameplay, cf. Section 5.2). Thus, our normalization
function n implements adaptive precision: the closer to a wall a state is, the fewer digits are
truncated. This is illustrated in Figure 10.

23:9

CVIT 2016



23:10

323

324
325
326
327
328
329
330
331
332
333
334

335

336

337

338
339
340
341

342

Finding Shortest Walks in Kuru Kuru Kururin

Piecewise solving

Another way to reduce the search space is to perform a piecewise solving: checkpoints are
inserted in the level, fragmenting the map into segments that are solved successively. Once
a checkpoint has been reached, no other path to this checkpoint will be explored, and the
search for a path to the next checkpoint starts.

This strategy can be achieved in two ways. First, it can be achieved by manually
performing multiple searches: a first one from the starting state to an arbitrary area
(checkpoint 1), then another search from the resulting state to another area (checkpoint 2),
and so on. Second, it can be achieved in an automated way by modifying the cost map
so that reaching a checkpoint area induces a huge decrease of the estimated cost. This is
illustrated in Figures 12, 13 and 14 where checkpoints have been added on healing areas
(these are good spots to insert checkpoints as they offer a great mobility: when the helirin is
in a healing area, it can easily change its angle by hitting a wall without taking damage).

Figure 14 Cost map
(with checkpoint)

Figure 13 Cost map
(no checkpoint)

Figure 12 Map (start area,
healing area, )

5 Applications

5.1 Implementation: KuruBot

The exact physics of the game Kuru Kuru Kururin as well as the path finding algorithm
described in Section 4 have been implemented in KuruBot [14], a C# application of about
4000 lines of code. It can also communicate with the emulator BizHawk in order to retrieve
the current map and state from a live session, find a path, and play it on the emulator.
Several configurations can be loaded to achieve different goals that we present in this section.

8 KuruBot 173 - 0 x

Loadconig | Save config 20ew | 8 =] (2 2 5ett 0 O Showeostmap | T | (13 [0 2

Destroy sover | 1.Buid sover fegalendng) | | 1.Buld solver anyendng) | 3.Costmap (0= 4.5ove | () Showeostmap | T H3 |0 %

Play move then use @/CTRUALT-Numpad) | LM | S Ls| ss| Rs B U S| Pl O Loglastmoves O Physialmap @ Graphicaimap B Obiects

Dowrlosd state

O Physical map @ Graphical map

Connect Dowrload map Dowriasd nest nputs Send last inputs

Figure 16 KuruBot while searching for a

Figure 15 Interface of KuruBot path
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5.2 Categories

Levels can be solved with different constraints (“categories”). The main categories are
presented below. Solving each category requires using an adapted configuration for KuruBot,
which are summarized in Figure 17.

23:11

Resolution .
Category Cost map Checkpoints
(base, near walls)
Damageless No wall crossing 2 px, 2 px Automated, at healing areas
Regular intended No wall crossing 2 px, 1 px Automated, at healing areas
Regular unrestricted | Wall crossing if hearts > 1 1 px, 1/8 px Manual, short segments

Figure 17 Configuration adapted for each category

Damageless completion

The damageless completion category consists in finishing every level without taking any
damage. Note that hitting a wall may still be permitted if the helirin is in a healing zone
(thus, the bump speed and rotation speed components of the state cannot be neglected). A
tool-assisted speedrun of this category made using KuruBot is available on TASVideos.org [16].

Regular completion, intended gameplay

For regular completion, the helirin is allowed to hit walls, which can be used to walk through
narrow spaces, to have a boost due to the speed bump, and to change the angle of the
helirin. When hitting a wall outside a healing area, the helirin looses a heart and becomes
invulnerable for 20 frames. Thus, the following bits must be added to our state:

2 bits remaining hearts (max: 3),

5 bits invulnerability frames (max: 20).

Regular completion, unrestricted gameplay

The unrestricted category allows exploiting the physics of the game, in particular the way
collisions are handled, to break through walls. However, such manipulations are only possible
for some wall placements, and require a very precise combination of position, angle, and
bump speed to be performed. Consequently, for this category, the resolution of the solver
(cf. Section 4.2.2) must be increased (in particular the resolution near walls).

The cost map computation is also modified: crossing walls is allowed, but at a constant
cost to account for the number of frames it takes to cross a wall in average (e.g. 10 frames),
and only if the helirin has at least 2 hearts (otherwise, hitting a wall will lose the level).
Consequently, two cost maps must be computed: one that will be used when the helirin has
at least 2 hearts left, and one when it has only one heart (cf. Figures 18 and 19). Positions
that are inside walls also get a constant cost reduction to account for the fact that these are
advantageous areas inside which the helirin should stay as long as possible (in particular, the
helirin can move faster when it is inside a wall). A tool-assisted speedrun of this category
made using KuruBot is available on TASVideos.org [20].
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N

Figure 18 Unrestricted gameplay cost Figure 19 Unrestricted gameplay cost
map (with extra hearts) map (no extra heart)

Other incentives

We may want to search for solutions that minimize measures other than the total number of
frames. For instance, minimizing the number of input changes (i.e. the number of times a
button must be pressed or released) can also be of interest in order to find humanly-viable
ways to cross a wall for speedrunners. Such paths have already been found by using KuruBot
with an adapted configuration [19].

6 Conclusion

In this work, we presented an algorithmic and complexity study of Kuru Kuru Kururin,
a puzzle-action game whose distinctive mechanics naturally give rise to rich shortest-walk
problems. By formalizing the game’s behavior and progressively extending the model with
additional mechanics, we revealed how each gameplay element (rotation, speed asymmetries,
spring tiles, moving objects, etc.) introduces its own source of computational hardness. Our
results show that even the base problem is weakly NP-hard, and that various mechanics
independently raise the difficulty to NP-hard or even co-NP-hard levels. Despite these
hardness results, when time or mechanical constraints are restricted, several variants admit
pseudo-polynomial-time or even polynomial-time algorithms.

In the second part of this article, focusing this time on approximate resolution, we
introduced practical algorithmic techniques, including a state-space reduction strategy and a
custom A* search guided by approximate cost maps, that enable efficient solving of real game
levels despite an astronomically large underlying state space. Finally, we implemented these
ideas in KuruBot, a full physics-accurate path-finding framework capable of exploring a wide
variety of gameplay settings. Overall, this work bridges complexity theory, temporal graph
reasoning, and game physics modeling, showing how a charming 2001 Game Boy Advance
title can serve as a surprisingly deep computational playground.

Going forward, in the short term we plan to benchmark the performance of our path
finding algorithm in the presence of the different elements introduced in the complexity
analysis. Using a level editor that we created [13], we plan to generate multiple levels, each
focusing on a specific mechanic: base gameplay without diagonal moves, base gameplay
with diagonal moves, springs, moving objects, etc. The performance on these benchmark
levels will then be evaluated using a specific configuration of KuruBot, and compared to the
conclusions of our complexity analysis. Moreover, such levels could also serve as an amusing
playing field to compare state-of-the-art pathfinding algorithms.

Finally, in the future, our complexity analysis could be extended to model the whole
game, including knock-back, the life system and healing areas, as well as the sequels Kururin
Paradise and Kururin Squash!, hidden gems which were only released in Japan and feature
even more unique game mechanics to explore.
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A  Complexity Proofs
A.1 Theorem 17

Proof. We reduce from weakly NP-hard problem SUBSETSUM [12]. Let ay,...,a, be the
elements and let B be the target. Let A=, _,., a; and L =2A + 1.

We propose the following instance of BASEKURURIN. We set the helirin properties to
(4, Veards Vdiag,w) = (L,2L,2L —1,0). We set D = 2A+n —1 and Sy = (L,L,0,1). We
set wall tiles to form the instance illustrated in Figure 7. For each choice of element a; in
SUBSETSUM, we have two branching paths: one, which we call P; o, where you go east for
2a; time units, and another, which we call P; 1, where you go north-east for a; time units,
then south-east for a; time units. Both paths are then merged. Finally, there is a single 1 x 1
goal tile at position ((2D + 1)L — 2B, L).

If our instance of SUBSETSUM has a solution S C {1,...,n}, we propose base helirin
walk W where, for all i € {1,...,n}, we take path P, if i € S and path P, otherwise.
This walk is valid and ends at position ((2D + 1)L —2(}_,cga:), L) = (2D +1)L — 2B, L).
Conversely, if we have a valid base helirin walk W, by our choice for speed values vqrd, Vdiag
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and time D, only the east, north-east and south-east directions can be used. Therefore,
according to the position of wall tiles, the underlying path from base helirin walk W is
necessarily of the form P;; ---P,; with j; € {0,1} for all i. We propose S = {i €
{1,...,n}|j; = 1}. Then, because W is valid and ends at position ((2D + 1)L — 2B, L), we
have: 2B = 2(3 ;g ai)- <

A.2 Remark 19

The main idea is to keep track of time with the rotation angle. By taking a large enough
half-length ¢ of the helirin compared to the denominator ¢, of angular speed factor w, we
can discriminate between angles which are multiples of 7/q,, e.g., by setting wall tiles in
a similar way as in the proof of Theorem 23. Using this trick, having the time span of the
input temporal graph fit within a single half-rotation, we can replicate the layout of the
input temporal graph, and only make the start and the end of the representation of each
timed arc available at specific angles - and thus at specific times.

A.3 Theorem 20

Proof. We have eight non-negative integer variables (,),eam\ {0}, representing the time
spent going in each of the eight directions. For each goal tile of side length s(*) and bottom-left
corner coordinates (z(*), y()), we propose the following integer linear program:

minimize Z Ty
rEMN\{0}

subject t0  Veara(TE — Tw) + Vaiag(TNE + TsE — TNw — Tsw) = 2,
Veard(TE — Tw) + Vdiag(TNE + TsE — Tnw — Tsw) < 2 4 500,
Veard(TN — T5) + Vdiag(tNE + Tnw — 258 — sw) > y@,
Veard(TN — T5) + Vdiag(TNE + Tnw — TsE — Tsw) < y® + 50
z, € 21, pe M\{0}.

This ensures that we land on the goal tile as soon as possible. We have a constant number
of variables and constraints, so the system can be solved in O(1) time (e.g., see [1]). Thus, by
taking the minimum over all goal tiles, we can conclude whether, starting from base helirin
state Sy, there is a valid base helirin walk to a goal tile with duration at most D. |

A.4 Theorem 23

Proof. (Sketch.) We reduce from weakly NP-hard problem SUBSETSUM [12]. Let aq,...,a,
be the elements and let B be the target. Let A=)",_., a; and L = 16(A+2n +1).

We propose a similar reduction to the proof of Theorem 17, except we rely on rotation
angle offsets instead of position offsets. We set D =6n+1, q, = L/2 and p, = 1+ ¢, /8. We

set the helirin properties to (¢, Veard, Vdiag,w) = (L, 2L,0,p./q.) and we set Sg = (L, L, 0, 1).

We set wall tiles to form the instance illustrated in Figure 20. For each choice of element a;
in SUBSETSUM, we have two branching paths: one, which we call P; o, where you go south,
then east for 2 time units, then north, and another, which we call P; ;, where you go north,
then east for 2 time units, then south. Both paths are then merged. Plus, there is a single
2L x 2L goal tile at position ((4n + 1)2L,0).

Now, let P = {0,...,q,/2}. Given p € P, let (z,,y,) be the coordinates of the right
extremity of the helirin at angle pr/q,. Since L > 2q,/v/?2, function (p = (zp,y,)) is
injective over P, and sequences (z,)pep and (y,)pep are respectively non-decreasing and
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Figure 20 Layout of the NP-hardness reduction with spring tiles. The isolated square at the left
of the goal tile is a wall tile which is part of the angle check gadget, which only allows for angle
(B +2n)7/8L.

non-increasing. Plus, for each p € P, couple (x, y,) is merely a rational approximation of
the cosine and sine of angle pr/q,,, and thus can be computed in polynomial time.
Knowing this, we can use these values to position our spring tiles accordingly. In bottom
paths P, o, we rely on numerator (p = ¢,,/4+1) to align the edges with the mirroring property.
In bottom paths P; 1, we rely on numerator (p = q,,/4+ 1 — a;) instead. And, once both
paths are merged, we rely on numerator (p = —¢,/8). Finally, right before the goal tile, we
set two wall tiles in order to block positions (zp,y,) for every p € P\{B + 2n}. Then the
correspondence between valid base helirin walks and solutions of the SUBSETSUM instance
unfolds similarly to the proof of Theorem 17. Finally, one can easily adapt the reduction to
Case Vdiag = Veard-
<

A.5 Theorem 26

We detail proofs which make use of spiked balls with standstill base moves. In both of them,
we set the helirin properties to (¢, Veard, Vdiag, w) = (1,2,0,0) and base helirin state Sy to
(z,y,a,b) = (1,1,0,0). Plus, all spiked balls will have radius 1, = @ in their base move,
and v = 1. So, all relevant elements will be set along a grid of 2 x 2 squares.

NP-hardness

Proof. We reduce from 3-SAT. Let ¢ = A, .., (li1 V12 V1 3) be a 3-CNF formula with
m clauses and n variables, w.l.o.g. with exactly three literals per clause. We encode the
formula as an obstacle course going from left to right. Figure 21 represents the base layout,
which can be easily obtained with square wall tiles. Each vertical layer represents a clause
and has three available ways, each associated to a literal in this clause. And we set a single
goal tile of side length 2 at (z,y) = (4m + 4,0). Then, going from the start area (in red) to
the goal tile (in yellow) with no wait takes time at most T' = 6m + 6.

The plan is to dedicate time T for each of the 2" valuations of the variables to give them
a chance to reach the goal tile from the start, which will correspond to making ¢ true. First,
we only allow the helirin to leave the start area at periodic times (1 mod T'). We do so
with a spiked ball at (z,y) = (2,0) with 7 =T,to =2 and d = T — 1. Plus, once the helirin
leaves the start area, we force it to reach the goal tile by the end of the time period. We do
so by setting spiked balls for every 2 < i <2m + 2 and 0 < j <4 at (z,y) = (2¢,25) with
T=T,to=0and d = 1.
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Figure 21 Layout of the NP-hardness reduction with spiked balls, illustrated with input formula
@ = (x1 Vo2 Vaa) A(x2 VsV -zs). We are at time A + 1, i.e., about to check valuation
(x4, 73, 22,21) = (0,0,0, 1), which makes ¢ true by choosing literals x1 then —x4.

Now, for 1 < k < n we tie variable z;, to spiked balls of time period 7 = T2*¥. More
precisely, given 1 < ¢ < m and 1 < j < 3, we set a spiked ball S;; at x = 47 + 2 and
y = 4j — 4, with move duration d = 72%~! and:

if [; j = =1, is a positive literal: 7 = T2k tg =0,d = T2k 1,

if [; j = -y, is a negative literal: 7= T2 tqg=d = T2k,

In other words, spiked balls tied to literal xj, (resp. —xx) block their respective path during
periodic times (0, ..., 721 — 1 mod T2*) (resp. (T2~ ',...,T2¥ —1 mod T2%)).

We now piece everything together. Let us consider valuations (2., ..., x1) by lexicographic
order. Given 0 < h < 2" — 1, let v;, be the A** valuation by lexicographic order. Then,
v, matches with the binary representation of h from the right (e.g., the value of x1 in vy, is
the last digit). Knowing this, consider time units Th,...,T(h+ 1) — 1. During them, by the
definition of spiked balls S; ;, the latter block their respective path if and only if:

li; = o), and the (k — 1) digit of h from the right is 0, or

li; =~ and the (k — 1) digit of h from the right is 1.

Thus the missing spiked balls S; ; exactly correspond to the literals which are made true by
valuation vy,. As a result, starting from time Th, we can reach the goal tile by time T'(h+1) if
and only if v, makes ¢ true. Finally, we have that ¢ is satisfiable if and only if, starting from
base helirin state Sp, there is a base helirin walk reaching the goal tile by time D = T2". <«

co-NP-hardness

Proof. We reduce from 3-DNF-TAuTOLOGY. Let ¢ =\, ., (lij1 Ali2 Al;3) be a 3-DNF
formula with m conjunctions and n variables, again w.l.o.g. with exactly three literals per
conjunction. We encode the formula as an obstacle course going from left to right with
parallel subpaths, one per conjunction in ¢. Then, instead of reaching a goal tile, we allow
the helirin to loop back to the start area. Figure 22 represents the base layout, which can be
easily obtained with square wall tiles.

The plan is to dedicate time T for each of the 2™ valuations of the variables, this time
forcing each one of them to loop through the structure, essentially choosing a subpath - i.e.,
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Figure 22 Layout of the co-NP-hardness reduction with spiked balls, illustrated with input
formula ¢ = (mz1 A 22 A—x4) V (21 Az3 Axs). We are at time T+ 1, i.e., about to check valuation
(x4, 3, 22,21) = (0,0,0,1), which makes ¢ false.

a conjunction in . First, we set T' = 4m + 6, D = T2" 4 2 and set a spiked ball S5 at
(z,y) = (=2,0) with 7 = D,t; = 0 and d = D — 2. Then, at the beginning of each period,
we force the helirin to leave the start area and head to the right. We do so with two more
spiked balls:

So at (z,y) =(0,0) withr=T,tp=1and d=T —1,

Sh at (z,y) = (0,2) with 7 =T,t) =0 and d = 2.

Plus, we force the helirin to reach the end of our loop by the end of each time period. We do
so by setting spiked balls for every couple (4, 7) € {0,...,6} x {0,...,2m +1}\{(0,0),(0,1)}
at (z,y) = (2¢,2§) with 7 = T,to = T — 1 and d = 2. Then, other than time D — 1, the
helirin is necessarily at positions (1,3), (1,1),(3,1) at respective periodic times (7' — 1,0, 1
mod T).

Now, for 1 < k < n we tie variable z;, to spiked balls of time period 7 = T2*. More
precisely, given 1 < ¢ < mand 1 < j < 3, we set a spiked ball S;; at x = 2j 4+ 4 and
y = 4i — 4, with move duration d = 72*~! and:

if l; j = =1, is a positive literal: 7 = T2% to=0,d =121,

if [; ; = -y, is a negative literal: 7 = T2k to=d=T2F1.

Then, we have the same correspondence as in the previous proof between spiked ball
appearances and valuations considered by lexicographic order. So, starting from time T'h with
0 < h < 2" — 1, we can reach position (1,3) by time T'(h + 1) if and only if the A" valuation
vp, by lexicographic order makes ¢ true. Thus, we have that ¢ is a tautology if and only
if, starting from base helirin state Sy, there is a base helirin walk reaching the goal tile by
time D. |

Finally, it is clear that both reductions also work if vg;qg = Veqrd. Furthermore, the role
of spiked balls with standstill base moves can be easily achieved using pistons with unit-time
moves. Indeed, given such a spiked ball (1, z,y, 7, to, (0,d), 1), it blocks the square delimited
by cells (z,y) and (z + 2,y + 2) in periodic times (to,...to +d—1 mod 7). So, e.g., we can
define piston (2,x,—2,7,tg,to + d, (N, 1),y + 2) to achieve the same result - i.e., when it is
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inactive it is completely out of the way, and when it is active it blocks the square delimited
by cells (z,y) and (z + 2,y + 2).

A.6 Remark 27

Instead of using rotation angles and wall tiles to keep track of time like in Appendix A.2,
similarly to the proofs of Theorem 26, we use spiked balls with standstill base moves to set
intervals of time at which each edge in the underlying static graph is available. Furthermore,
we use moving spiked balls along the representation of each edge in order to dictate exactly
the travel time of the helirin along this edge. Not only does this allow us to encode interval
temporal graphs, it can also be used to restrict the waiting time of the helirin at each vertex.

23:19

CVIT 2016



	1 Introduction
	2 Preliminaries
	2.1 Base Gameplay
	2.2 Additional Gameplay Mechanics
	2.3 Other Problems

	3 Computational Complexity
	3.1 Base Gameplay
	3.2 Base Gameplay with Diagonal Speed Restrictions
	3.3 Base Gameplay with Spring Tiles
	3.4 Base Gameplay With Pistons and Spiked Balls

	4 Algorithmic Techniques
	4.1 State Space
	4.2 Custom A* Algorithm
	4.2.1 Cost map
	4.2.2 Reducing the search space


	5 Applications
	5.1 Implementation: KuruBot
	5.2 Categories

	6 Conclusion
	A Complexity Proofs
	A.1 Theorem 17
	A.2 Remark 19
	A.3 Theorem 20
	A.4 Theorem 23
	A.5 Theorem 26
	A.6 Remark 27


