
Introduction to Polymorphic Type Systems
From STLB to parametric and ad-hoc polymorphism

Mickaël Laurent
October 2, 2025

Charles University, Prague

https://mlaurent.ovh/courses/types/intro.pdf

0/44

https://mlaurent.ovh/courses/types/intro.pdf


Why static typing?

• Type safety: well-typed programs do not go wrong (Robin Milner)
• What does wrong mean here?
• Out-of-bound reads/writes are usually not catched by the type system

• Compilation/execution:
• Function calls can be resolved statically (no need for a dynamic dispatch)
• Rust: we statically know when memory should be freed (no need for a GC)

• Ecosystem:
• Type information is useful for the programmer (documentation)
• Type information is useful for the IDE (refactoring, completion, etc.)

1/44



Multiple flavors of types

• More focused on expressivity (not in this lecture):
• Dependent types (e.g. proof assistants: Lean, Rocq)
⇒ Type-checking is not decidable, the programmer must annotate manually

• Refinement types (e.g. verification-aware languages: F*, Dafny, Why3)
⇒ Type-checking is (usually) not decidable,
but can be partly automated using SMT-solvers

• More focused on usability:
• Type systems of mainstream static languages (e.g. Rust, OCaml)
⇒ Type-checking is decidable, and we may even have type inference

• Static type-checkers for dynamic languages (e.g. TypeScript, MyPy, PyRight)
⇒ Got more attention in the last 10 years (my research area)

2/44



Simply Typed Lambda Calculus
(STLC)

Simply Typed Lambda Calculus (STLC)

Parametric polymorphism (Hindley-Milner)

Subtyping and ad-hoc polymorphism

2/44



Reminder: λ-calculus

Constants c ∶∶= true ∣ false ∣ 0 ∣ 1 ∣ 2 ∣ 3 ∣ . . .
Expressions e ∶∶= c ∣ x ∣ λx .e ∣ e e ∣ (e, e) ∣ π1e ∣ π2e ∣ e ? e : e
Values v ∶∶= c ∣ λx .e ∣ (v , v)

• Expressions e are programs, composed of:
constants c, variables x , functions (λx .e), function application (e e),
pairs ((e, e)), pair projections (π1, π2), and conditionals (e ? e : e).

• Values v are results (fully-reduced expressions):
constants, functions, and pairs of values.

• All values are expressions, but not all expressions are values.

3/44



Expressions e ∶∶= c ∣ x ∣ λx .e ∣ e e ∣ (e, e) ∣ π1e ∣ π2e ∣ e ? e : e
Values v ∶∶= c ∣ λx .e ∣ (v , v)

Call-by-value semantics:

• When we have an application, we first reduce (evaluate) the argument,
then we enter the function (β-reduction),

• When we have a projection, we first reduce the argument, then we project.

(λx .e)v ↝ e{v/x} β-reduction (function application)
π1(v1, v2) ↝ v1 Left projection (return first element of a pair)
π2(v1, v2) ↝ v2 Right projection (return second element of a pair)

true ? e1 : e2 ↝ e1 Conditional (1) (take first branch)
false ? e1 : e2 ↝ e2 Conditional (2) (take second branch)

4/44



Example

We assume we have an integer comparison function leq:

leq (n1,n2) ↝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true if n1 ≤ n2

false otherwise

Apply max ≡ λx . λy . leq (x , y)? y : x to 42 and 24 and write the reduction steps.

(λx . λy . leq (x , y)? y : x) 42 24 (β-reduction)
↝ (λy . leq (42, y)? y :42) 24 (β-reduction)
↝ leq (42,24)?24 :42 (semantics of leq)
↝ false ?24 :42 (conditional)
↝ 42

5/44



Exercise

Currified function it takes its different parameters (x1, x2, ...) successively:
λx1. λx2. ... x1 ... x2 ... . A currified function can be partially applied.

Uncurrified function it takes its different parameters (x1, x2, ...) all at once
using a pair/tuple: λx . ... π1x ... π2x ... .

Write an uncurrified version of max ≡ λx . λy . leq (x , y)? y : x ,
apply it to 42 and 24 and write the reduction steps.

6/44



Simple Monomorphic Types

Base Types b ∶∶= bool ∣ int ∣ . . .
Types s, t ∶∶= b ∣ t → t ∣ t × t

We have a type constructor for each kind of value of our language:

Values v ∶∶= c ∣ λx .e ∣ (v , v)
• Base types (b) represent constants,
• Arrows (→) represent λ-abstractions,
• Products (×) represent pairs.

Examples:

• Currified max has type int→ int→ int
(→ is associative to the right, so int→ int→ int ≡ int→ (int→ int))

• Uncurrified max has type (int × int) → int 7/44



Typing rules

[BoolF]
false ∶ bool

[BoolT]
true ∶ bool

[Int]
n ∶ int

[Pair]
e1 ∶ t1 e2 ∶ t2

(e1, e2) ∶ t1 × t2
[Cond]

e ∶ bool e1 ∶ t e2 ∶ t
e ? e1 : e2 ∶ t

[App]
e1 ∶ s → t e2 ∶ s

e1 e2 ∶ t
[LProj]

e ∶ t1 × t2

π1e ∶ t1
[RProj]

e ∶ t1 × t2

π2e ∶ t2

• A statement e ∶ t (meaning e has type t) is called a judgment,
• Over the line, we have the premises,
• Under the line, we have the conclusion,
• A rule with no premise ([BoolF], [BoolT], [Int]) is sometimes called an axiom.

8/44



What to do for λ-abstractions and variables?

[Abs]
???

λx .e ∶ s → t
[Var]

???

x ∶ t

We need a notion of type environment (or type context) to store the type
of the variables that are in the current scope.

Type Environments Γ ∶∶= ∅ ∣ x ∶ t,Γ

We can freely reorder bindings in an environment.

We add environments to our judgments, Γ ⊢ e ∶ t, which reads:
under the environment Γ, the expression e has type t.

9/44



[Abs]
Γ, x ∶ s ⊢ e ∶ t

Γ ⊢ λx .e ∶ s → t
[Var]

Γ, x ∶ t ⊢ x ∶ t

[BoolF]
Γ ⊢ false ∶ bool

[BoolT]
Γ ⊢ true ∶ bool

[Int]
Γ ⊢ n ∶ int

[Pair]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[Cond]

Γ ⊢ e ∶ bool Γ ⊢ e1 ∶ t Γ ⊢ e2 ∶ t
Γ ⊢ e ? e1 : e2 ∶ t

[App]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1 e2 ∶ t
[LProj]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[RProj]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π2e ∶ t2

10/44



Exercise

We consider our built-in comparison leq to be a variable of type (int × int) → bool
in the current scope.

Try to derive the type int→ (int→ int) for the function

max ≡ λx . λy . leq (x , y)? y : x

under the initial environment Γ = leq ∶ (int × int) → bool.

[Pair]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[Cond]

Γ ⊢ e ∶ bool Γ ⊢ e1 ∶ t Γ ⊢ e2 ∶ t
Γ ⊢ e ? e1 : e2 ∶ t

[App]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1 e2 ∶ t
[Abs]

Γ, x ∶ s ⊢ e ∶ t
Γ ⊢ λx .e ∶ s → t

[Var]
Γ, x ∶ t ⊢ x ∶ t

11/44



For concision, we define:

Γ = leq ∶ (int × int) → bool

Γ′ = leq ∶ (int × int) → bool, x ∶ int

Γ′′ = leq ∶ (int × int) → bool, x ∶ int, y ∶ int

Typing derivation for max:

[Abs]

[Abs]

[Cond]

[App]
⋯

Γ′′ ⊢ leq (x , y) ∶ bool Γ′′ ⊢ y ∶ int Γ′′ ⊢ x ∶ int

Γ′′ ⊢ leq (x , y)? y : x ∶ int

Γ′ ⊢ λy . leq (x , y)? y : x ∶ int→ int

Γ ⊢ λx . λy . leq (x , y)? y : x ∶ int→ (int→ int)

12/44



Type safety

Theorem (Type safety)
If ∅ ⊢ e ∶ t, then either:

• e ↝∞ (e diverges), or
• e ↝∗ v with ∅ ⊢ v ∶ t (e reduces to a value of the same type)

In particular, this means that a well-typed expression cannot get stuck (e.g. 42 42).
How to prove this theorem?
Lemma (Type preservation)
If Γ ⊢ e ∶ t and e ↝ e′, then Γ ⊢ e′ ∶ t.

Lemma (Progress)
If ∅ ⊢ e ∶ t, then either e is a value or ∃e′. e ↝ e′.

13/44



Towards an algorithm

[App]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1 e2 ∶ t
[LProj]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[Pair]

Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2

Each rule of our type system is structural: it only applies to one expression constructor.

• [App] only applies on applications,
• [LProj] only applies on left projections,
• [Pair] only applies on pairs, etc.

This makes our type system syntax-directed: we know which rule to apply just by
looking at the syntax of the expression we are typing.

14/44



However, the rule [Abs] is not analytic: the domain s of the λ-abstraction does not
appear in the initial expression or environment.

[Abs]
Γ, x ∶ s ⊢ e ∶ t

Γ ⊢ λx .e ∶ s → t

While this domain s can be deduced if we know the resulting type (type checking),
this is not the case if we want to do type inference (i.e. find the type of the expression).

We will write the input of the algorithm in green, and its output in blue.

Type checking Finding a derivation for the judgment Γ ⊢ e ∶ t
(i.e. construct a derivation tree by recursively building the premises)

Type inference Finding a type t and a derivation for the judgment Γ ⊢ e ∶ t.

15/44



Unification

We will turn our type system into an inference algorithm based on unification.

To that purpose, we add type variables to the syntax of types:

Base Types b ∶∶= bool ∣ int ∣ . . .
Monomorphic Types s, t ∶∶= b ∣ t → t ∣ t × t ∣ α

Definition (Unifier)
For two terms e1 and e2, we say that a type substitution ψ is a unifier for e1 and e2

if and only if e1ψ ≡ e2ψ.

Definition (Most general unifier)
For two terms e1 and e2, we say that a type substitution ψ is a most general unifier
for e1 and e2 if and only if: (i) ψ is a unifier for e1 and e2, and (2) for any unifier ψ′

for e1 and e2, there exists ψ′′ such that ψ′ = ψ′′ ○ ψ.
16/44



Example: for two terms e1 ≡ α → β and e2 ≡ int→ β,

• {α ↝ int} is a most general unifier for e1 and e2,
• {α ↝ int, β ↝ int} is a unifier for e1 and e2.

Property (Principality of unification)
If there exists a unifier for e1 and e2,
then there exists a most general unifier for e1 and e2.

Definition (Unification)
The unification function mgu(e1, e2) returns a most general unifier for e1 and e2 if it
exists, and is not defined otherwise.

The unification function mgu(e1, e2) can be computed in linear time
(cf. unify algorithm from your previous lectures).

17/44



Exercise

• What is mgu(int × β, α × (α → int))?
• When there exists a most general unifier, is it always unique?
• What is mgu(α, β)?
• What is mgu(α → int, α)?

18/44



Type inference

To infer the domain of a λ-abstraction, we initially type it with a fresh type variable α,
and then substitute it on-the-fly when required, using unification.

To do so, we extend our typing judgements (green=input, blue=output):

Γ ⊢ e ∶ t ⊣ ψ

It reads: under the typing environment Γ, the expression e can be typed t
provided that we apply the substitution ψ to our context (i.e. to Γ).

In particular, if we get Γ ⊢ e ∶ t ⊣ ψ, then Γψ ⊢ e ∶ t should be derivable.

19/44



Axiomatic rules just return the identity substitution, noted ∅:
[BoolF]

Γ ⊢ false ∶ bool ⊣ ∅ [BoolT]
Γ ⊢ true ∶ bool ⊣ ∅ [Int]

Γ ⊢ n ∶ int ⊣ ∅

[Var]
Γ, x ∶ t ⊢ x ∶ t ⊣ ∅

Note: if no rule can be applied (e.g. we want type x but there is no binding for x in
our environment Γ), then the type inference algorithm fails (we get a static type error).

[Abs]
Γ, x ∶ α ⊢ e ∶ t ⊣ ψ

Γ ⊢ λx .e ∶ (αψ) → t ⊣ ψ
α fresh

To type λx .e, we assume x has a fresh type α and recursively call our algorithm on the
body e, yielding a type t and a substitution ψ. The substitution ψ must be applied to
our context (in particular to α), so the resulting type for our λ-abstraction is (αψ) → t.

20/44



[App]
Γ ⊢ e1 ∶ t1 ⊣ ψ1 Γψ1 ⊢ e2 ∶ t2 ⊣ ψ2 ψ = mgu(t1ψ2, t2 → α)

Γ ⊢ e1 e2 ∶ αψ ⊣ ψ ○ ψ2 ○ ψ1
α fresh

To type an application e1 e2, we first recursively type e1, yiedling a type t1 and a
substitution ψ1. We then type e2 under the updated context Γψ1, yielding a type t2

and a substitution ψ2.

At this point, the argument has type t2, and the function has type t1ψ2. We thus use
unification to solve the constraint

t1ψ2 ≡ t2 → α

(with α a fresh type variable representing the type of the result),
yielding a substitution ψ. The type of the result of the application is now αψ.

21/44



[Pair]
Γ ⊢ e1 ∶ t1 ⊣ ψ1 Γψ1 ⊢ e2 ∶ t2 ⊣ ψ2

Γ ⊢ (e1, e2) ∶ (t1ψ2) × t2 ⊣ ψ2 ○ ψ1

[LProj]
Γ ⊢ e ∶ t ⊣ ψ ψ′ = mgu(t, α1 × α2)

Γ ⊢ π1e ∶ α1ψ
′ ⊣ ψ′ ○ ψ α1, α2 fresh

[RProj]
Γ ⊢ e ∶ t ⊣ ψ ψ′ = mgu(t, α1 × α2)

Γ ⊢ π2e ∶ α2ψ
′ ⊣ ψ′ ○ ψ α1, α2 fresh

[Cond]

Γ ⊢ e ∶ s ⊣ ψ ψ′ = mgu(s,bool)
(Γψ)ψ′ ⊢ e1 ∶ t1 ⊣ ψ1 ((Γψ)ψ′)ψ1 ⊢ e2 ∶ t2 ⊣ ψ2 ψ′′ = mgu(t1ψ2, t2)

Γ ⊢ e ? e1 : e2 ∶ t2ψ
′′ ⊣ ψ′′ ○ ψ2 ○ ψ1 ○ ψ′ ○ ψ

These typing rules are a reformulation of Algorithm W in the context of STLC.

22/44

https://en.wikipedia.org/wiki/Hindley-Milner_type_system#Algorithm_W


Exercise

Derive a type for λx . (π2x , π1x) under the empty environment ∅.

[Abs]
Γ, x ∶ α ⊢ e ∶ t ⊣ ψ

Γ ⊢ λx .e ∶ (αψ) → t ⊣ ψ α fresh

[Pair]
Γ ⊢ e1 ∶ t1 ⊣ ψ1 Γψ1 ⊢ e2 ∶ t2 ⊣ ψ2

Γ ⊢ (e1, e2) ∶ (t1ψ2) × t2 ⊣ ψ2 ○ ψ1

[LProj]
Γ ⊢ e ∶ t ⊣ ψ ψ′ = mgu(t, α1 × α2)

Γ ⊢ π1e ∶ α1ψ
′ ⊣ ψ′ ○ ψ α1, α2 fresh

[RProj]
Γ ⊢ e ∶ t ⊣ ψ ψ′ = mgu(t, α1 × α2)

Γ ⊢ π2e ∶ α2ψ
′ ⊣ ψ′ ○ ψ α1, α2 fresh

23/44



Lack of polymorphism

What happens if we try to infer the type of the identity function λx .x?

∅ ⊢ λx .x ∶ α → α ⊣ ∅

We obtain the type α → α. Let’s add it to our context:

Γ = id ∶ α → α

Now, what happens if we try to type (id 42, id false)?

• The first application id 42 substitutes α by int,
yielding a new environment where id ∶ int→ int,

• Then, the second application id false fails.

24/44



Parametric polymorphism
(Hindley-Milner)

Simply Typed Lambda Calculus (STLC)

Parametric polymorphism (Hindley-Milner)

Subtyping and ad-hoc polymorphism

24/44



Compositionality

A type system should be compositional: each definition of your program is typed
sequentially, only once, without knowing how it will be used by later definitions.

However, a definition may be use multiple times with arguments of different types:

let id x = x (* Type: ’a -> ’a *)
(* ... *)
let foo =

id 42, (* ’a should be substituted by int *)
id true (* ’a should be substituted by bool *)

(* ... *)
let bar x =

id x (* ’a should be substituted by the type of x *)

⇒ we need a way to use different instantiations of a definition 25/44



Let-bindings

In order to model sequential definitions, we add let-bindings to our syntax:

Expressions e ∶∶= c ∣ x ∣ λx .e ∣ e e ∣ (e, e) ∣ π1e ∣ π2e ∣ e ? e : e
∣ let x = e in e

Values v ∶∶= c ∣ λx .e ∣ (v , v)

Semantics: we first reduce the definition, then

let x = v in e ↝ e{v/x} Let-reduction

Typing rule (first attempt, no parametric polymorphism):

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t
26/44



Type Schemes

We want a way to give a polymorphic type to a let-definition, that is, a type that can
be instantiated in different ways at different locations.

To that purpose, we define a notion of type scheme:

Base Types b ∶∶= bool ∣ int ∣ . . .
Types s, t ∶∶= b ∣ t → t ∣ t × t ∣ α
Type Schemes σ ∶∶= ∀α⃗. t

where α⃗ is a set of type variables.

Intuitively, a type scheme ∀α⃗. t represents a set of types:
it represents all the instances of t obtained by substituting the type variables in α⃗.

∀α⃗. t ≃ {tψ ∣ ψ ∈ Substs, dom(ψ) ⊆ α⃗}

In particular, if α⃗ = ∅, then ∀α⃗. t ≃ {t}.
27/44



New Type Environments

We update our type environments Γ to associate variables to type-schemes
(instead of types):

Type Schemes σ ∶∶= ∀α⃗. t
Type Environments Γ ∶∶= ∅ ∣ x ∶ σ,Γ

For instance, if (x ∶ ∀α. α → α) ∈ Γ,
it means that the variable x can be typed with any type in this set:

{(α → α)ψ ∣ ψ ∈ Substs, dom(ψ) ⊆ {α}} = {t → t ∣ t ∈ Types}

Note: our type environments now associate variables to type-schemes,
but our typing rules still derive a type (Γ ⊢ e ∶ t), not a type-scheme.

28/44



New Typing rules

As a variable can now be associated to multiple types, we have to modify the [Var]
typing rule: it has to choose one type among those captured by the type-scheme.

[Var]
Γ, x ∶ t ⊢ x ∶ t Ð→

[Var]
Γ, x ∶ ∀α⃗. t ⊢ x ∶ tψ

dom(ψ) ⊆ α⃗

We also need to modify the typing rules that add a binding in the environment Γ:

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t Ð→ ???

[Abs]
Γ, x ∶ s ⊢ e ∶ t

Γ ⊢ λx .e ∶ s → t Ð→ ???

29/44



Should we allow any type scheme as a domain in [Abs] rules?

[Abs]
Γ, x ∶ ∀α⃗. s ⊢ e ∶ t

Γ ⊢ λx .e ∶ (∀α⃗. s) → t

(∀α⃗. s) → t is not a type...
⇒ We cannot accept quantification in the domain of a λ-abstraction.
Our polymorphism is prenex: there cannot be quantifications inside of a type
constructor.

[Abs]
Γ, x ∶ s ⊢ e ∶ t

Γ ⊢ λx .e ∶ s → t Ð→
[Abs]

Γ, x ∶ ∀∅. s ⊢ e ∶ t
Γ ⊢ λx .e ∶ s → t

30/44



What about [Let] rules?

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t

Let’s say e1 is the identity λy .y , for which we derive the type α → α.
When typing the rest of the program (i.e., e2),
x may be called on arguments of different types
⇒ x should be associated to the type-scheme ∀α. α → α

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ generalize(s) ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t

31/44



[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ generalize(s) ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t
Should generalize(s) quantify over all type variables in s?

[Abs]

[Let]

[Var]
Γ, y ∶ ∀∅. α ⊢ y ∶ α

[Var]
Γ, y ∶ ∀∅. α, x ∶ ∀α. α ⊢ x ∶ int

Γ, y ∶ ∀∅. α ⊢ let x = y in x ∶ int

Γ ⊢ λy . let x = y in x ∶ α → int

No, it is unsound to generalize type variables that are bound to the current
environment Γ. We should only generalize type variables in fv(s) ∖ fv(Γ).

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ ∀(fv(s) ∖ fv(Γ)). s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t
32/44



Exercise

Find a derivation for the judgment ∅ ⊢ let x =λy .y in (x 42, x true) ∶ int × bool.

[Int]
Γ ⊢ n ∶ int

[Bool]
Γ ⊢ b ∶ bool

[Var]
Γ, x ∶ ∀α⃗. t ⊢ x ∶ tψ

dom(ψ) ⊆ α⃗

[Abs]
Γ, x ∶ ∀∅. s ⊢ e ∶ t
Γ ⊢ λx .e ∶ s → t

[App]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1 e2 ∶ t

[LProj]
Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[RProj]

e ∶ t1 × t2

π2e ∶ t2
[Pair]

Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ ∀(fv(s) ∖ fv(Γ)). s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t 33/44



Type inference

Two rules are not analytic (i.e. we have to guess a type or substitution):

[Abs]
Γ, x ∶ ∀∅. s ⊢ e ∶ t
Γ ⊢ λx .e ∶ s → t

[Var]
Γ, x ∶ ∀α⃗. t ⊢ x ∶ tψ

dom(ψ) ⊆ α⃗

Similarly to STLC, we can infer the domain of a λ-abstractions and the instantiations
of variables using unification.

Γ ⊢ e ∶ t ⊣ ψ

34/44



[App]
Γ ⊢ e1 ∶ t1 ⊣ ψ1 Γψ1 ⊢ e2 ∶ t2 ⊣ ψ2 ψ = mgu(t1ψ2, t2 → α)

Γ ⊢ e1 e2 ∶ αψ ⊣ ψ ○ ψ2 ○ ψ1
α fresh

[Abs]
Γ, x ∶ ∀∅. α ⊢ e ∶ t ⊣ ψ
Γ ⊢ λx .e ∶ (αψ) → t ⊣ ψ

α fresh

[Var]
Γ, x ∶ ∀α⃗. t ⊢ x ∶ tψ ⊣ ∅

ψ maps type variables in α⃗ to fresh ones

[Let]
Γ ⊢ e1 ∶ s ⊣ ψ1 Γψ1, x ∶ ∀(fv(s) ∖ fv(Γ)). s ⊢ e2 ∶ t ⊣ ψ2

Γ ⊢ let x = e1 in e2 ∶ t ⊣ ψ2 ○ ψ1

Exercise: implement a Hindley-Milner type system following these typing rules.

35/44



Recap

• Simply Typed Lambda Calculus (STLC):
base types, arrows, products, type variables (but no quantifier)
⇒ Inference of the domain of functions is possible using unification

• Hindley-Milner (HM): type environments can now quantify universally (∀)
over some type variables using type-schemes
⇒ Type inference is almost unchanged

• System F: generalization of Hindley-Milner,
where ∀ quantifiers can appear inside type constructors (in particular, arrows)
⇒ Type inference is not decidable anymore (unless we add some restrictions)

36/44



Towards an imperative language

Our λ-calculus is pure, in particular let-variables cannot be reassigned.

Let us extend our language and types with references (i.e. mutable memory cells):

Expressions e ∶∶= c ∣ x ∣ λx .e ∣ e e ∣ (e, e) ∣ π1e ∣ π2e ∣ e ? e : e
∣ let x = e in e ∣ ref e ∣ !e ∣ x := e

Values v ∶∶= c ∣ λx .e ∣ (v , v)
Types s, t ∶∶= b ∣ t → t ∣ t × t ∣ α ∣ ref t

We can then encode mutable variables with references:
mut v = 15 ; v = v + 42 ; ...

↓
let v = (ref 15) in let _ = (v := !v + 42) in ...

37/44



[Ref]
Γ ⊢ e ∶ t

Γ ⊢ ref e ∶ ref t
[Read]

Γ ⊢ e ∶ ref t

Γ ⊢ !e ∶ t
[Assign]

Γ ⊢ x ∶ ref t Γ ⊢ e ∶ t
Γ ⊢ x := e ∶ t

But we have to be careful not to generalize the type of expressions with side-effects:

let foo = ref (fun x -> x) in

(* foo: forall ’a. ref(’a -> ’a) *)

foo := (fun i -> i + 42) ;

(* Typechecks by instantiating ’a with int *)

!foo false (* Reduction stuck! false + 42 *)
(* Typechecks by instantiating ’a with false *)

38/44



[Ref]
Γ ⊢ e ∶ t

Γ ⊢ ref e ∶ ref t
[Read]

Γ ⊢ e ∶ ref t

Γ ⊢ !e ∶ t
[Assign]

Γ ⊢ x ∶ ref t Γ ⊢ e ∶ t
Γ ⊢ x := e ∶ t

Solution: only generalize values (value restriction).

[LetGen]
Γ ⊢ e1 ∶ s Γ, x ∶ ∀(fv(s) ∖ fv(Γ)). s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t
if e1 is a value

[Let]
Γ ⊢ e1 ∶ s Γ, x ∶ ∀∅. s ⊢ e2 ∶ t

Γ ⊢ let x = e1 in e2 ∶ t
otherwise

39/44



Subtyping and ad-hoc polymorphism

Simply Typed Lambda Calculus (STLC)

Parametric polymorphism (Hindley-Milner)

Subtyping and ad-hoc polymorphism

39/44



What is the type of this function?

def inv(x:float):
if x == 0.0:

return None

else:

return 1/x

float→(float∨none)

What is the type of this one?

def f(x:Union[float , NoneType]):
if x == None:

return 0.0

else:

return x

(float∨none)→float

40/44



Subtyping

In dynamic languages, functions can manipulate data of heterogeneous types
⇒ Hence we need to be able to express the union of two types t1 ∨ t2

⇒ We may also need to express an intersection, e.g. printable ∧ iterable

• The type float should be usable everywhere a float ∨ none is expected
• The type none should be usable everywhere a float ∨ none is expected

Formally, we define a subtyping relation ≤ such that:

• ≤ is reflexive (t ≤ t) and transitive (t1 ≤ t2 and t2 ≤ t3 implies t1 ≤ t3),
• for any t1 and t2, t1 ≤ t1 ∨ t2 and t2 ≤ t1 ∨ t2,
• other properties may be desirable, for instance idempotency (t ≃ t ∧ t)

41/44



Overloaded functions

What is the type of this function?

def inv(x):

if isinstance(x, complex):
return ...

elif isinstance(x, float):
return ...

(complex ∨ float) → (complex ∨ float)

or if we want to be more precise

(complex→ complex) ∧ (float→ float)
42/44



Parametric polymorphism vs ad-hoc polymorphism

Parametric polymorphism: captures genericity of functions: when the function has
the same behavior on (potentially infinitely many) different input types.
Implemented by quantifying on type variables (e.g. ∀α. α → α).

Ad-hoc polymorphism: captures overloading of functions: when the function has
(finitely many) different behaviors depending on the input type.
Implemented by associating multiple signatures to a top-level function,
or using intersection types (e.g. (int→ bool) ∧ (string→ int)).

43/44



Existing approaches

To be continued ...

44/44



References i

44/44


	Simply Typed Lambda Calculus (STLC)
	Parametric polymorphism (Hindley-Milner)
	Subtyping and ad-hoc polymorphism

