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—— Abstract

Compilers for dynamic languages often rely on intermediate representations with explicit type
annotations to facilitate writing program transformations. This paper documents the design of a
new typed intermediate representation for a just-in-time compiler for the R programming language
called FIR. Type annotations, in FIR, capture properties such as sharing, the potential for effects,
and compiler speculations. In this extended abstract, we focus on the sharing properties that may
be used to optimize away some copies of values.
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1 Background

R is a dynamic language with lazy evaluation, first-class environments, and copy-on-write
vectors, posing unique optimization challenges. FIR is a minimalistic calculus inspired by
core languages, such as Featherweight Java [4] or Go [3], specifically designed to model and
optimize the particular language features of R. FIR is meant to be the foundation of an
intermediate representation for a just-in-time compiler. Its design enables and facilitates
optimizations and its static type system can be used to improve confidence in their correctness.
The key features of FIR, and the corresponding R features they are designed for, are contextual
dispatch [1] and static types to elide runtime checks and effect inference; promise types for
laziness; effects to disprove reflection; and explicit ownership to remove redundant copies
and reference-count checks.

This paper focuses on ownership. Laziness will be only described to explain ownership,
and contextual dispatch and effects will not be described further.
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2  Ownership Overview

In R, shared vectors are implicitly copied before mutation to ensure value independence. FIR
makes all copies explicit and allows mutation only when vectors are guaranteed unique. Every
vector in FIR has a ownership: fresh, owned, borrowed, or shared. Only fresh and owned
vectors are guaranteed unique. The borrowed vectors exist only in function parameters and
remain unique after the call. Vectors returned by lazy promises, accessible by reflection,
or with unknown aliases are shared. They can never be guaranteed unique and must be
duplicated to become fresh or owned.

A vector is fresh if it is not referenced by any variable (e.g., a newly-allocated vector).
A fresh vector can be assigned to an owned or shared variable. An owned vector cannot
be assigned to a variable, otherwise it would compromise uniqueness as it could be then
assigned to multiple live variables. Effectively, fresh vectors have a reference count of zero,
and owned vectors of at most one. A vector can be made fresh by copying. Furthermore, a
vector in an owned register variable can become fresh by “using” the register; the ownership
analysis ensures a register cannot be accessed after it is “use”d.

vl : owned = [1,2,3] # [1,2,3] allocates a fresh vector.

# It becomes owned when assigned to vli.
v2 : owned = vl # Not allowed.
v3 : owned = use vl # Allowed, vl cannot be accessed anymore.

There are further restrictions on owned vectors. First, an owned vector cannot be passed
to an owned parameter. An owned parameter may be “used”, making the vector fresh.
Second, it cannot be passed to a shared parameter. A vector in a shared parameter may
persist after the call ends, thus possibly loosing its uniqueness. On the other hand, an
owned vector can be passed to a borrowed parameter because borrowed vectors are explicitly
guaranteed not to persist after calls, so the uniqueness is preserved (although the vector will
not be unique during the call, FIR has no concurrency and borrowed vectors are read-only,
so it cannot be mutated either).

f : (borrowed) -> shared = fun(v:borrowed) { print(v) }
g : (owned) -> shared = fun(v:owned) { v[1] <- 42 ; print(v) }
v : owned = [1,2,3]

f(v) # this is allowed as v is still unique after the call
g(v) # this is not allowed (g may mutate or leak v)
g(use v) # this ts allowed, but v cannot be accessed anymore

In R, it is possible to access variables from other scopes using reflection. This means that
variables that are subject to reflection cannot be considered owned. In FIR, we distinguish
between named variables, which may be accessed through reflection, and register variables,
which cannot. Named variables can be optimized into registers if the type system guarantees
they are not subject to reflection. To that end, we need to do effect tracking.

3 Ownership Analysis

Ownerships in FIR are checked with a flow-insensitive type analysis and a flow-sensitive
action analysis. The type analysis checks that vectors are not used in violation of their
ownership annotations; for example, that a shared vector is not assigned to an owned variable,
or a borrowed argument is not passed to an owned parameter. The action analysis checks
that every variable is initialized before its first access and not accessed after a “use”.
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The action analysis is implemented by computing the action of every expression, bottom-
up. An action describes what registers the expression may interact with; those it may read
before assigning, those it may assign, those it may “use”, and those it may capture. To
understand the latter, consider the following example:

v : owned = [1,2,3]

p : shared = prom{ print(v) ; 42 } # Creates a promise (delayed computation)
g(use v) # g is a function that takes an owned or shared parameter
print(p) # Calling print on the promise p will trigger the evaluation of p

Promises, like zero-argument closures in other languages, are used to model laziness: in
R, arguments passed to functions are not evaluated right away, but their evaluation may be
triggered later when they are accessed. The code above defines a promise p that prints the
vector in v, and then returns the constant 42. Even though, at the moment of its creation,
the promise p is allowed to access v, it is not true anymore when p is actually evaluated
(when calling print(p)) because the register v has been used in the meantime. It is not
always possible to statically determine when a promise will be forced, and this is why our
action analysis considers that the registers captured by a promise indefinitely live, and thus
disallows any future use of these registers.

The action analysis passes if no action computations reveal an access after use, a use of a
captured register, and if the function body’s action has no “read before assignment” registers
except parameters.

4 Related work

We have previously designed and implemented an IR for R: PIR [2]. PIR is not a minimal
calculus but a full implementation, which models a large subset of R and has been deployed
in a real compiler, R . PIR has contextual dispatch, types, and effects, but no ownership. We
believe that, because we have implemented PIR’s type system while designing it, it has more
edge-cases and complexity than necessary; even as we extend FIR’s type system to support
as much as PIR, we hope to keep it simpler and more intuitive. Also, PIR’s type system is
more naive and does not offer type safety guarantees, while FIR’s type system does.

Our analysis is loosely inspired by Rust’s borrow checker, which has been implemented in
MIR [6] and formalized in RustBelt [5] and Ozide [7]. Rust’s owned values are analogous
to FIR’s owned and fresh values, in that both are guaranteed unique. Rust’s immutable
borrows are analogous to FIR’s borrowed values, in that they are temporary, and can store
data from owned variables which remain owned after they expire. Rust’s Rc “smart pointers”
are analogous to FIR’s shared values, in that they have no enforced liveness and any value
assigned to them can never be mutated after. Rust’s mutable borrows have no FIR analogue,
because they would never be generated, since functions in R cannot mutate vector parameters
(FIR’s owned parameters are generated when the compiler discovers a vector that, in GNU-R,
would be copied then discarded; they are not a feature of R but an optimization, however we
have no optimization requiring an analogue to Rust’s mutable borrow).

Scoping and control flow is more complex in R than in Rust, due to R’s lazy semantics
and first-class mutable environments. Thus we introduce an explicit use instruction, and
define a flow-sensitive analysis to detect potential “read before assignment” and “read after
use” faults.
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