
Polymorphic Type Inference for Dynamic Languages
Reconstructing Types for Systems combining
Parametric, Ad-Hoc, and Subtyping Polymorphism

Mickaël Laurent, supervised by Giuseppe Castagna and Kim Nguyen
June 21, 2024

IRIF (Université Paris Cité, France), LMF (Université Paris-Saclay, France)

0/36

Introduction

country city pop density ⋯

USA Chicago 2665039 4398 ⋯
USA Boston 675647 2911 ⋯

France Gif-sur-Yvette 22352 1900 ⋯
France Pontamafrey 307 26 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

How to retrieve the population of a city?

1/36

Introduction

country city pop density ⋯

USA Chicago 2665039 4398 ⋯
USA Boston 675647 2911 ⋯

France Gif-sur-Yvette 22352 1900 ⋯
France Pontamafrey 307 26 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

How to retrieve the population of a city?

1/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());

let city_index = rdr.headers().unwrap().iter()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h| h == "pop").unwrap();

for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index).parse().unwrap());

}

}

None

}
2/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());

let city_index = rdr.headers().unwrap().iter()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h| h == "pop").unwrap();

for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index).parse().unwrap());

}

}

None

}
2/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());

let city_index = rdr.headers().unwrap().iter()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h| h == "pop").unwrap();

for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index).parse().unwrap());

}

}

None

}
2/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());

let city_index = rdr.headers().unwrap().iter()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h| h == "pop").unwrap();

for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index).parse().unwrap());

}

}

None

}
2/36

get_population in Python

def get_population(data, city):

d = csv.DictReader(StringIO(data))

for row in d:

if row[’city’] == city:

return int(row[’pop’])

return None

3/36

get_population in Python

def get_population(data, city):

d = csv.DictReader(StringIO(data))

for row in d:

if row[’city’] == city:

return int(row[’pop’])

return None

No need to unwrap or pattern-match the result like in Rust.

In Rust:
get_population(data, "Gif-sur-Yvette").unwrap() / 1000 // 22

In Python:
get_population(data, "Gif-sur-Yvette") // 1000 # 22

3/36

get_population in Python

def get_population(data, city):

d = csv.DictReader(StringIO(data))

for row in d:

if row[’city’] == city:

return int(row[’pop’])

return None

def in_thousands(n):

if type(n) is int:
return n // 1000

else:

return None

in_thousands(get_population(data, "Gif-sur-Yvette")) # 22

in_thousands(get_population(data, "Jpeg-sur-Yvette")) # None

3/36

get_population in Python

def get_population(data, city):

d = csv.DictReader(StringIO(data))

for row in d:

if row[’city’] == city:

return int(row[’pop’])

return None

def in_thousands(n):

if type(n) is int:
return n // 1000

else:

return None

in_thousands(get_population(data, "Gif-sur-Yvette")) # 22

in_thousands(get_population(data, "Jpeg-sur-Yvette")) # None 3/36

Dynamic Languages

✓ Programmer does not need to write type annotations

✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)

× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)

× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...

× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Dynamic Languages

✓ Programmer does not need to write type annotations
✓ Functions can accept and return data of different types
⇒ No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch:
which implementation to execute is determined at runtime

⇒ Flexible, concise, good for experimenting and prototyping

× It is not clear where program can fail (no explicit unwrap, etc.)
× No type safety guarantees (TypeError exceptions can be raised at runtime)
× No static type ⇒ provide little information to the programmer (documentation) ...
× ... and to the toolchain (optimizer, linter, auto-complete, etc.)

⇒ Unsafe, bad for production code and maintenance of large projects

4/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations

⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types

⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch

⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations

⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types

⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch

⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations
⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types

⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch

⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations
⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types
⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch

⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations
⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types
⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch
⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Motivations

Goal: statically typing dynamic languages without hindering their flexibility.

✓ Programmer does not need to write type annotations
⇒ Static types should be inferred (as much as possible)

✓ Functions can accept and return data of different types
⇒ Our type system should feature union types and subtyping

✓ Overloaded functions, via explicit type-cases or via dynamic dispatch
⇒ Our type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring
many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.

5/36

Summary

Types & Core Language

Declarative Type System

Algorithmic Type System

Reconstruction of the Annotation Tree

Conclusion and Perspective

6/36

Types & Core Language

Types & Core Language
Typing JavaScript’s “||” (Logical Or)
Set-Theoretic Types
Core Language

Declarative Type System

Algorithmic Type System

Reconstruction of the Annotation Tree

Conclusion and Perspective
6/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)

and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)

• For false,null,0,±0.0,"", etc. ⇒ returns false

• For other values ⇒ returns true

ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)

type Falsy = false | null | 0 | 0.0 | ""

type Truthy = ~Falsy

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶

(Falsy→ false) ∧ (Truthy→ true)

and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)

• For false,null,0,±0.0,"", etc. ⇒ returns false

• For other values ⇒ returns true

ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)

type Falsy = false | null | 0 | 0.0 | ""

type Truthy = ~Falsy

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶

(Falsy→ false) ∧ (Truthy→ true)

and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)

• For false,null,0,±0.0,"", etc. ⇒ returns false

• For other values ⇒ returns true
Falsy

Truthy

ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)

type Falsy = false | null | 0 | 0.0 | ""

type Truthy = ~Falsy

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)

and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)

LogicalOr ∶ ∀α,β .

((α∧Truthy,Any) → α∧Truthy)
∧ ((Falsy, β) → β)

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)
and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)
Challenges:

• Type narrowing: type the first branch under the hypothesis that x is Truthy
⇒ union types

• Capture overloaded behaviors: LogicalOr has different behaviors depending on x
⇒ intersection types

• Capture genericity: LogicalOr returns its first or second parameter, unchanged
⇒ parametric polymorphism

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)
and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)
Challenges:

• Type narrowing: type the first branch under the hypothesis that x is Truthy
⇒ union types

• Capture overloaded behaviors: LogicalOr has different behaviors depending on x
⇒ intersection types

• Capture genericity: LogicalOr returns its first or second parameter, unchanged
⇒ parametric polymorphism

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Falsy→ false) ∧ (Truthy→ true)
and LogicalOr ∶ ∀α,β. ((α∧Truthy,Any) → α∧Truthy) ∧ ((Falsy, β) → β)
Challenges:

• Type narrowing: type the first branch under the hypothesis that x is Truthy
⇒ union types

• Capture overloaded behaviors: LogicalOr has different behaviors depending on x
⇒ intersection types

• Capture genericity: LogicalOr returns its first or second parameter, unchanged
⇒ parametric polymorphism

7/36

Set-Theoretic Types [Frisch, 2004]

[Castagna and Xu, 2011]

Constants c ∶∶= false ∣true ∣0 ∣1 ∣ ...
Basic Types b ∶∶= Bool ∣Int ∣ ...
Set-Theoretic Types t ∶∶= c ∣b ∣ t → t ∣ t × t ∣ t ∨ t ∣ t ∧ t ∣ ¬t ∣Empty ∣Any

∣α

Types are interpreted as sets of values:

JfalseK ={false}
JIntK ={0,1, . . .}

Jt1 × t2K = Jt1K × Jt2K
Jt1 → t2K= “Jt2KJt1K”

JAnyK =V (with V the set of all values)
JEmptyK=∅

Jt1 ∨ t2K = Jt1K ∪ Jt2K
Jt1 ∧ t2K = Jt1K ∩ Jt2K

J¬tK=V∖JtK

Semantic subtyping: t1 ≤ t2
def⇔ Jt1K ⊆ Jt2K

8/36

Set-Theoretic Types [Frisch, 2004]

[Castagna and Xu, 2011]

Constants c ∶∶= false ∣true ∣0 ∣1 ∣ ...
Basic Types b ∶∶= Bool ∣Int ∣ ...
Set-Theoretic Types t ∶∶= c ∣b ∣ t → t ∣ t × t ∣ t ∨ t ∣ t ∧ t ∣ ¬t ∣Empty ∣Any

∣α

Types are interpreted as sets of values:

JfalseK ={false}
JIntK ={0,1, . . .}

Jt1 × t2K = Jt1K × Jt2K
Jt1 → t2K= “Jt2KJt1K”

JAnyK =V (with V the set of all values)
JEmptyK=∅

Jt1 ∨ t2K = Jt1K ∪ Jt2K
Jt1 ∧ t2K = Jt1K ∩ Jt2K

J¬tK=V∖JtK

Semantic subtyping: t1 ≤ t2
def⇔ Jt1K ⊆ Jt2K

8/36

Set-Theoretic Types [Frisch, 2004]

[Castagna and Xu, 2011]

Constants c ∶∶= false ∣true ∣0 ∣1 ∣ ...
Basic Types b ∶∶= Bool ∣Int ∣ ...
Set-Theoretic Types t ∶∶= c ∣b ∣ t → t ∣ t × t ∣ t ∨ t ∣ t ∧ t ∣ ¬t ∣Empty ∣Any

∣α

Types are interpreted as sets of values:

JfalseK ={false}
JIntK ={0,1, . . .}

Jt1 × t2K = Jt1K × Jt2K
Jt1 → t2K= “Jt2KJt1K”

JAnyK =V (with V the set of all values)
JEmptyK=∅

Jt1 ∨ t2K = Jt1K ∪ Jt2K
Jt1 ∧ t2K = Jt1K ∩ Jt2K

J¬tK=V∖JtK

Semantic subtyping: t1 ≤ t2
def⇔ Jt1K ⊆ Jt2K

8/36

Set-Theoretic Types [Frisch, 2004]

[Castagna and Xu, 2011]

Constants c ∶∶= false ∣true ∣0 ∣1 ∣ ...
Basic Types b ∶∶= Bool ∣Int ∣ ...
Set-Theoretic Types t ∶∶= c ∣b ∣ t → t ∣ t × t ∣ t ∨ t ∣ t ∧ t ∣ ¬t ∣Empty ∣Any

∣α

Types are interpreted as sets of values:

JfalseK ={false}
JIntK ={0,1, . . .}

Jt1 × t2K = Jt1K × Jt2K
Jt1 → t2K= “Jt2KJt1K”

JAnyK =V (with V the set of all values)
JEmptyK=∅

Jt1 ∨ t2K = Jt1K ∪ Jt2K
Jt1 ∧ t2K = Jt1K ∩ Jt2K

J¬tK=V∖JtK

Semantic subtyping: t1 ≤ t2
def⇔ Jt1K ⊆ Jt2K

8/36

Set-Theoretic Types [Frisch, 2004] [Castagna and Xu, 2011]

Constants c ∶∶= false ∣true ∣0 ∣1 ∣ ...
Basic Types b ∶∶= Bool ∣Int ∣ ...
Set-Theoretic Types t ∶∶= c ∣b ∣ t → t ∣ t × t ∣ t ∨ t ∣ t ∧ t ∣ ¬t ∣Empty ∣Any ∣α

Types are interpreted as sets of values:

JfalseK ={false}
JIntK ={0,1, . . .}

Jt1 × t2K = Jt1K × Jt2K
Jt1 → t2K= “Jt2KJt1K”

JAnyK =V (with V the set of all values)
JEmptyK=∅

Jt1 ∨ t2K = Jt1K ∪ Jt2K
Jt1 ∧ t2K = Jt1K ∩ Jt2K

J¬tK=V∖JtK

Semantic subtyping: t1 ≤ t2
def⇔ ∀σ. t1σ ≤ t2σ

def⇔ ∀σ. Jt1σK ⊆ Jt2σK
8/36

Syntax and Semantics

Expressions e ∶∶= c ∣ x ∣λx .e ∣ e e ∣ (e, e) ∣πie ∣(e∈t) ? e : e
Values v ∶∶= c ∣λx .e ∣ (v , v)

with the usual call-by-value semantics (w/ leftmost outermost strategy):

(λx .e)v ↝ e{v/x}
π1(v1, v2) ↝ v1

π2(v1, v2) ↝ v2

(v∈t) ? e1 : e2 ↝ e1 if v has type t
(v∈t) ? e1 : e2 ↝ e2 otherwise

9/36

Declarative Type System

Types & Core Language

Declarative Type System
Mixing Union, Intersection, and HM Polymorphism
Typing Type-Cases
Capturing Overloaded Behaviors

Algorithmic Type System

Reconstruction of the Annotation Tree

Conclusion and Perspective
9/36

Usual Rules

[Const]
Γ ⊢ c ∶ c

[Var]
Γ ⊢ x ∶ Γ(x)

x ∈ dom(Γ)

[×I]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[×E1]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[×E2]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π2e ∶ t2

[→I]
Γ, x ∶ t1 ⊢ e ∶ t2

Γ ⊢ λx .e ∶ t1 → t2
[→E]

Γ ⊢ e1 ∶ t1 → t2 Γ ⊢ e2 ∶ t1

Γ ⊢ e1 e2 ∶ t2

[≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′

10/36

Usual Rules

[Const]
Γ ⊢ c ∶ c

[Var]
Γ ⊢ x ∶ Γ(x)

x ∈ dom(Γ)

[×I]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[×E1]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[×E2]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π2e ∶ t2

[→I]
Γ, x ∶ t1 ⊢ e ∶ t2

Γ ⊢ λx .e ∶ t1 → t2
[→E]

Γ ⊢ e1 ∶ t1 → t2 Γ ⊢ e2 ∶ t1

Γ ⊢ e1 e2 ∶ t2

[≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′

10/36

Usual Rules

[Const]
Γ ⊢ c ∶ c

[Var]
Γ ⊢ x ∶ Γ(x)

x ∈ dom(Γ)

[×I]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[×E1]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[×E2]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π2e ∶ t2

[→I]
Γ, x ∶ t1 ⊢ e ∶ t2

Γ ⊢ λx .e ∶ t1 → t2
[→E]

Γ ⊢ e1 ∶ t1 → t2 Γ ⊢ e2 ∶ t1

Γ ⊢ e1 e2 ∶ t2

[≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′

10/36

Usual Rules

[Const]
Γ ⊢ c ∶ c

[Var]
Γ ⊢ x ∶ Γ(x)

x ∈ dom(Γ)

[×I]
Γ ⊢ e1 ∶ t1 Γ ⊢ e2 ∶ t2

Γ ⊢ (e1, e2) ∶ t1 × t2
[×E1]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π1e ∶ t1
[×E2]

Γ ⊢ e ∶ t1 × t2

Γ ⊢ π2e ∶ t2

[→I]
Γ, x ∶ t1 ⊢ e ∶ t2

Γ ⊢ λx .e ∶ t1 → t2
[→E]

Γ ⊢ e1 ∶ t1 → t2 Γ ⊢ e2 ∶ t1

Γ ⊢ e1 e2 ∶ t2

[≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′
10/36

Mixing Union, Intersection, and HM Polymorphism

Intersection types
[Coppo et al., 1981]

Prenex polymorphism
[Hindley, 1969, Milner, 1978]

Union types
[MacQueen et al., 1986]

[Barbanera et al., 1995]

[Inst]
Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

For genericity

[Gen]
Γ ⊢ e ∶ t

Γ ⊢ e ∶ t{γ ↝ α}

For overloading

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2

For type narrowing

[∨]

Γ ⊢ e′ ∶ s1 ∨ s2

Γ, x ∶ s1 ⊢ e ∶ t Γ, x ∶ s2 ⊢ e ∶ t
Γ ⊢ e{e′/x} ∶ t

11/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: α,β ∈ VarsP
Some type variables are monomorphic: γ,δ ∈ VarsM

Vars = VarsP ∪VarsM

We can instantiate polymorphic type variables:

[Inst]
Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

dom(σ) ⊆ VarsP

We can generalize a monomorphic type variable γ into a polymorphic type variable α

(only if γ is not bound to the environment):

[Gen]
Γ ⊢ e ∶ t

Γ ⊢ e ∶ t{γ ↝ α}
γ /∈ vars(Γ)

12/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: α,β ∈ VarsP
Some type variables are monomorphic: γ,δ ∈ VarsM

Vars = VarsP ∪VarsM

We can instantiate polymorphic type variables:

[Inst]
Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

dom(σ) ⊆ VarsP

We can generalize a monomorphic type variable γ into a polymorphic type variable α

(only if γ is not bound to the environment):

[Gen]
Γ ⊢ e ∶ t

Γ ⊢ e ∶ t{γ ↝ α}
γ /∈ vars(Γ)

12/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: α,β ∈ VarsP
Some type variables are monomorphic: γ,δ ∈ VarsM

Vars = VarsP ∪VarsM

We can instantiate polymorphic type variables:

[Inst]
Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

dom(σ) ⊆ VarsP

We can generalize a monomorphic type variable γ into a polymorphic type variable α

(only if γ is not bound to the environment):

[Gen]
Γ ⊢ e ∶ t

Γ ⊢ e ∶ t{γ ↝ α}
γ /∈ vars(Γ)

12/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true

13/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true

13/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true

13/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true 13/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true 13/36

let id = λx .x
let test = (id 42,id true)

We first type id under the empty environment ∅:

[Gen]

[→I]

[Var]
x ∶ γ ⊢ x ∶ γ

∅ ⊢ λx .x ∶ γ → γ
with γ monomorphic

∅ ⊢ λx .x ∶ α → α
with α polymorphic

We then type test under the environment Γ = (id ∶ α → α):

[×I]

[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ 42→ 42

[Const]
Γ ⊢ 42 ∶ 42

Γ ⊢ id 42 ∶ 42
[→E]

[Inst]

[Var]
Γ ⊢ id ∶ α → α

Γ ⊢ id ∶ true→ true

[Const]
Γ ⊢ true ∶ true

Γ ⊢ id true ∶ true

Γ ⊢ (id 42,id true) ∶ 42 × true 13/36

Intersection

Intersection introduction:

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2

Intersection elimination can be derived from subsumption:

[≤]
Γ ⊢ e ∶ t′

Γ ⊢ e ∶ t
t′ ≤ t Ð→ [≤]

Γ ⊢ e ∶ t1 ∧ t2

Γ ⊢ e ∶ t1
t1 ∧ t2 ≤ t1

14/36

Intersection

Intersection introduction:

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2

Intersection elimination can be derived from subsumption:

[≤]
Γ ⊢ e ∶ t′

Γ ⊢ e ∶ t
t′ ≤ t Ð→ [≤]

Γ ⊢ e ∶ t1 ∧ t2

Γ ⊢ e ∶ t1
t1 ∧ t2 ≤ t1

14/36

For instance, we can type λx .x :

• A first time for the domain Bool, yielding Bool→ Bool,
• A second time for the domain Int, yielding Int→ Int,
• Then, we can use the intersection introduction rule to derive the type
(Bool→ Bool) ∧ (Int→ Int)

[∧]

[→I]

[Var]
x ∶ Bool ⊢ x ∶ Bool

∅ ⊢ λx .x ∶ Bool→ Bool
[→I]

[Var]
x ∶ Int ⊢ x ∶ Int

∅ ⊢ λx .x ∶ Int→ Int

∅ ⊢ λx .x ∶ (Bool→ Bool) ∧ (Int→ Int)

15/36

For instance, we can type λx .x :

• A first time for the domain Bool, yielding Bool→ Bool,

• A second time for the domain Int, yielding Int→ Int,
• Then, we can use the intersection introduction rule to derive the type
(Bool→ Bool) ∧ (Int→ Int)

[∧]

[→I]

[Var]
x ∶ Bool ⊢ x ∶ Bool

∅ ⊢ λx .x ∶ Bool→ Bool
[→I]

[Var]
x ∶ Int ⊢ x ∶ Int

∅ ⊢ λx .x ∶ Int→ Int

∅ ⊢ λx .x ∶ (Bool→ Bool) ∧ (Int→ Int)

15/36

For instance, we can type λx .x :

• A first time for the domain Bool, yielding Bool→ Bool,
• A second time for the domain Int, yielding Int→ Int,

• Then, we can use the intersection introduction rule to derive the type
(Bool→ Bool) ∧ (Int→ Int)

[∧]

[→I]

[Var]
x ∶ Bool ⊢ x ∶ Bool

∅ ⊢ λx .x ∶ Bool→ Bool
[→I]

[Var]
x ∶ Int ⊢ x ∶ Int

∅ ⊢ λx .x ∶ Int→ Int

∅ ⊢ λx .x ∶ (Bool→ Bool) ∧ (Int→ Int)

15/36

For instance, we can type λx .x :

• A first time for the domain Bool, yielding Bool→ Bool,
• A second time for the domain Int, yielding Int→ Int,
• Then, we can use the intersection introduction rule to derive the type
(Bool→ Bool) ∧ (Int→ Int)

[∧]

[→I]

[Var]
x ∶ Bool ⊢ x ∶ Bool

∅ ⊢ λx .x ∶ Bool→ Bool
[→I]

[Var]
x ∶ Int ⊢ x ∶ Int

∅ ⊢ λx .x ∶ Int→ Int

∅ ⊢ λx .x ∶ (Bool→ Bool) ∧ (Int→ Int)

15/36

Union

Union introduction can be derived from subsumption:

[≤]
Γ ⊢ e ∶ t′

Γ ⊢ e ∶ t
t′ ≤ t Ð→ [≤]

Γ ⊢ e ∶ t1

Γ ⊢ e ∶ t1 ∨ t2
t1 ≤ t1 ∨ t2

Union elimination:

[∨]
Γ ⊢ e′ ∶ s1 ∨ s2 Γ, x ∶ s1 ⊢ e ∶ t Γ, x ∶ s2 ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

16/36

Union

Union introduction can be derived from subsumption:

[≤]
Γ ⊢ e ∶ t′

Γ ⊢ e ∶ t
t′ ≤ t Ð→ [≤]

Γ ⊢ e ∶ t1

Γ ⊢ e ∶ t1 ∨ t2
t1 ≤ t1 ∨ t2

Union elimination:

[∨]
Γ ⊢ e′ ∶ s1 ∨ s2 Γ, x ∶ s1 ⊢ e ∶ t Γ, x ∶ s2 ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

16/36

(f 42 , f 42) with f ∶ Int→ Bool

with x ∶ Bool ≃ true ∨ false

We type (x , x):

• First, by assuming that x ∶ true ⇒ true × true,
• Then, by assuming that x ∶ false ⇒ false × false

[∨]

Γ ⊢ f 42 ∶ true ∨ false
Γ, x ∶ true ⊢ (x , x) ∶ true × true Γ, x ∶ false ⊢ (x , x) ∶ false × false

Γ ⊢ (x , x){(f 42)/x} ∶ (true × true) ∨ (false × false)

17/36

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ true ∨ false

We type (x , x):

• First, by assuming that x ∶ true ⇒ true × true,
• Then, by assuming that x ∶ false ⇒ false × false

[∨]

Γ ⊢ f 42 ∶ true ∨ false
Γ, x ∶ true ⊢ (x , x) ∶ true × true Γ, x ∶ false ⊢ (x , x) ∶ false × false

Γ ⊢ (x , x){(f 42)/x} ∶ (true × true) ∨ (false × false)

17/36

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ true ∨ false

We type (x , x):

• First, by assuming that x ∶ true ⇒ true × true,

• Then, by assuming that x ∶ false ⇒ false × false

[∨]

Γ ⊢ f 42 ∶ true ∨ false
Γ, x ∶ true ⊢ (x , x) ∶ true × true Γ, x ∶ false ⊢ (x , x) ∶ false × false

Γ ⊢ (x , x){(f 42)/x} ∶ (true × true) ∨ (false × false)

17/36

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ true ∨ false

We type (x , x):

• First, by assuming that x ∶ true ⇒ true × true,
• Then, by assuming that x ∶ false ⇒ false × false

[∨]

Γ ⊢ f 42 ∶ true ∨ false
Γ, x ∶ true ⊢ (x , x) ∶ true × true Γ, x ∶ false ⊢ (x , x) ∶ false × false

Γ ⊢ (x , x){(f 42)/x} ∶ (true × true) ∨ (false × false)

17/36

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ true ∨ false

We type (x , x):

• First, by assuming that x ∶ true ⇒ true × true,
• Then, by assuming that x ∶ false ⇒ false × false

[∨]

Γ ⊢ f 42 ∶ true ∨ false
Γ, x ∶ true ⊢ (x , x) ∶ true × true Γ, x ∶ false ⊢ (x , x) ∶ false × false

Γ ⊢ (x , x){(f 42)/x} ∶ (true × true) ∨ (false × false)

17/36

Unsound in the presence of polymorphic type variables:

(f 42 , f 42) with f ∶ Int→ Bool

with x ∶ Bool ≃ (Bool ∧ α) ∨ (Bool ∧ ¬α) (with α polymorphic)

We type (x , x):

• First, by assuming that x ∶ Bool ∧ α ⇒ Empty (by substituting α by Empty),
• Then, by assuming that x ∶ Bool ∧ ¬α ⇒ Empty (by substituting α by Any)

We must prevent the type decomposition from containing polymorphic type variables:

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

where u does not contain any polymorphic type variable: vars(u) ∩VarsP = ∅

18/36

Unsound in the presence of polymorphic type variables:

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ (Bool ∧ α) ∨ (Bool ∧ ¬α) (with α polymorphic)

We type (x , x):

• First, by assuming that x ∶ Bool ∧ α ⇒ Empty (by substituting α by Empty),
• Then, by assuming that x ∶ Bool ∧ ¬α ⇒ Empty (by substituting α by Any)

We must prevent the type decomposition from containing polymorphic type variables:

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

where u does not contain any polymorphic type variable: vars(u) ∩VarsP = ∅

18/36

Unsound in the presence of polymorphic type variables:

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ (Bool ∧ α) ∨ (Bool ∧ ¬α) (with α polymorphic)

We type (x , x):

• First, by assuming that x ∶ Bool ∧ α ⇒ Empty (by substituting α by Empty),

• Then, by assuming that x ∶ Bool ∧ ¬α ⇒ Empty (by substituting α by Any)

We must prevent the type decomposition from containing polymorphic type variables:

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

where u does not contain any polymorphic type variable: vars(u) ∩VarsP = ∅

18/36

Unsound in the presence of polymorphic type variables:

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ (Bool ∧ α) ∨ (Bool ∧ ¬α) (with α polymorphic)

We type (x , x):

• First, by assuming that x ∶ Bool ∧ α ⇒ Empty (by substituting α by Empty),
• Then, by assuming that x ∶ Bool ∧ ¬α ⇒ Empty (by substituting α by Any)

We must prevent the type decomposition from containing polymorphic type variables:

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

where u does not contain any polymorphic type variable: vars(u) ∩VarsP = ∅

18/36

Unsound in the presence of polymorphic type variables:

(f 42 , f 42) with f ∶ Int→ Bool
x x

with x ∶ Bool ≃ (Bool ∧ α) ∨ (Bool ∧ ¬α) (with α polymorphic)

We type (x , x):

• First, by assuming that x ∶ Bool ∧ α ⇒ Empty (by substituting α by Empty),
• Then, by assuming that x ∶ Bool ∧ ¬α ⇒ Empty (by substituting α by Any)

We must prevent the type decomposition from containing polymorphic type variables:

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

where u does not contain any polymorphic type variable: vars(u) ∩VarsP = ∅
18/36

Typing Type-Cases

Two cases:
(v∈t) ? e1 : e2 ↝ e1 if v has type t
(v∈t) ? e1 : e2 ↝ e2 otherwise

Two rules:

[∈1]
Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

19/36

Typing Type-Cases

Two cases:
(v∈t) ? e1 : e2 ↝ e1 if v has type t
(v∈t) ? e1 : e2 ↝ e2 otherwise

Two rules:

[∈1]
Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

19/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any } λx . (x ∈ Int) ? x + 1 : false

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any }

λx . (x ∈ Int) ? x + 1 : false

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any } λx . (x ∈ Int) ? x + 1 : false

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any } λx . (x ∈ Int) ? x + 1 : false

Int ∨ ¬Int

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any } λx . (x ∈ Int) ? x + 1 : false

Int ∨ ¬Int Int Int

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any } λx . (x ∈ Int) ? x + 1 : false

Int ∨ ¬Int ¬Int

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[∨]

Γ ⊢ e′ ∶ s
Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Any }

λx . (x ∈ Int) ? x + 1 : false

[→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

20/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Int } λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Int }

λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Int } λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ Int } λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ ¬Int } λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ ¬Int } λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Capturing Overloaded Behaviors: Intersection Introduction

[∧]
Γ ⊢ e ∶ t1 Γ ⊢ e ∶ t2

Γ ⊢ e ∶ t1 ∧ t2
[∈1]

Γ ⊢ e ∶ t Γ ⊢ e1 ∶ t1

Γ ⊢ (e∈t) ? e1 : e2 ∶ t1
[∈2]

Γ ⊢ e ∶ ¬t Γ ⊢ e2 ∶ t2

Γ ⊢ (e∈t) ? e1 : e2 ∶ t2

Γ = { x ∶ ¬Int }

λx . (x∈Int) ? x + 1 : false

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false)

(Int→ Int) ∧ (¬Int→ false) ≤ Any→ (Int ∨ false)

21/36

Contribution 1

Type safety of the declarative type system
For every expression e, if ∅ ⊢ e ∶ t, then:
– either e reduces to a value v of type t,
– or e diverges.

However, this type system is not algorithmic.

How to turn it into an algorithm?

22/36

Contribution 1

Type safety of the declarative type system
For every expression e, if ∅ ⊢ e ∶ t, then:
– either e reduces to a value v of type t,
– or e diverges.

However, this type system is not algorithmic.

How to turn it into an algorithm?

22/36

Algorithmic Type System

Types & Core Language

Declarative Type System

Algorithmic Type System
Declarative = Non-algorithmic
Making the Type System Syntax-Directed
Making the Rules Analytic

Reconstruction of the Annotation Tree

Conclusion and Perspective
22/36

Declarative = Non-algorithmic

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false) [→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

Many possible derivations:

• Some rules can be applied on every expression (the system is not syntax-directed):
• Union elimination [∨]
• Intersection introduction [∧]

• Instantiation [Inst]
• Subsumption [≤]

• Some premises cannot be guessed from the conclusion (rules are not analytic):

• The types forming the union in [∨]

• The type of the parameter in [→I]

How to make the type system algorithmic?

23/36

Declarative = Non-algorithmic

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false) [→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

Many possible derivations:

• Some rules can be applied on every expression (the system is not syntax-directed):
• Union elimination [∨]
• Intersection introduction [∧]

• Instantiation [Inst]
• Subsumption [≤]

• Some premises cannot be guessed from the conclusion (rules are not analytic):

• The types forming the union in [∨]

• The type of the parameter in [→I]

How to make the type system algorithmic?

23/36

Declarative = Non-algorithmic

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false) [→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

Many possible derivations:

• Some rules can be applied on every expression (the system is not syntax-directed):
• Union elimination [∨]
• Intersection introduction [∧]

• Instantiation [Inst]
• Subsumption [≤]

• Some premises cannot be guessed from the conclusion (rules are not analytic):

• The types forming the union in [∨]

• The type of the parameter in [→I]

How to make the type system algorithmic?

23/36

Declarative = Non-algorithmic

[∧]

[→I]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Int→ Int
[→I]

[∈2]
x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ ¬Int→ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ (Int→ Int) ∧ (¬Int→ false) [→I]

[∨]

[∈1]
x ∶ Int ⊢ x + 1 ∶ Int

x ∶ Int ⊢ (x∈Int) ? x + 1 : false ∶ Int
[∈2]

x ∶ ¬Int ⊢ false ∶ false

x ∶ ¬Int ⊢ (x∈Int) ? x + 1 : false ∶ false

x ∶ Any ⊢ (x∈Int) ? x + 1 : false ∶ Int ∨ false

∅ ⊢ λx . (x∈Int) ? x + 1 : false ∶ Any→ (Int ∨ false)

Many possible derivations:

• Some rules can be applied on every expression (the system is not syntax-directed):
• Union elimination [∨]
• Intersection introduction [∧]

• Instantiation [Inst]
• Subsumption [≤]

• Some premises cannot be guessed from the conclusion (rules are not analytic):

• The types forming the union in [∨]

• The type of the parameter in [→I]

How to make the type system algorithmic?
23/36

Making the Type System Syntax-Directed

Solution to make the type system syntax directed without loosing generality:

• Subsumption [≤] and instantiation [Inst] are embedded in destructor rules:

[→E]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1e2 ∶ t
+ [Inst]

Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

+ [≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′

⇒ [App]
Γ ⊢ e1 ∶ t1 with t1σ1 ≤ s → t Γ ⊢ e2 ∶ t2 with t2σ2 ≤ s

Γ ⊢ e1e2 ∶ t

24/36

Making the Type System Syntax-Directed

Solution to make the type system syntax directed without loosing generality:

• Subsumption [≤] and instantiation [Inst] are embedded in destructor rules:

[→E]
Γ ⊢ e1 ∶ s → t Γ ⊢ e2 ∶ s

Γ ⊢ e1e2 ∶ t
+ [Inst]

Γ ⊢ e ∶ t
Γ ⊢ e ∶ tσ

+ [≤]
Γ ⊢ e ∶ t t ≤ t′

Γ ⊢ e ∶ t′

⇒ [App]
Γ ⊢ e1 ∶ t1 with t1σ1 ≤ s → t Γ ⊢ e2 ∶ t2 with t2σ2 ≤ s

Γ ⊢ e1e2 ∶ t

24/36

Making the Type System Syntax-Directed

• The union elimination [∨] should be applied once on every distinct subexpression

⇒ We transform the expression in Maximal Sharing Canonical (MSC) form,
which gives a unique name to each distinct subexpression:

(f x , f x) ↝ bind u = f x in

bind v = (u,u) in v

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

⇒ [Bind]
Γ ⊢ a ∶ s (∀i ∈ I) Γ,u ∶ s ∧ ui ⊢ κ ∶ ti

Γ ⊢ bind u = a in κ ∶ ⋁i∈I ti
{ui}i∈I a partition of Any

25/36

Making the Type System Syntax-Directed

• The union elimination [∨] should be applied once on every distinct subexpression

⇒ We transform the expression in Maximal Sharing Canonical (MSC) form,
which gives a unique name to each distinct subexpression:

(f x , f x) ↝ bind u = f x in

bind v = (u,u) in v

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

⇒ [Bind]
Γ ⊢ a ∶ s (∀i ∈ I) Γ,u ∶ s ∧ ui ⊢ κ ∶ ti

Γ ⊢ bind u = a in κ ∶ ⋁i∈I ti
{ui}i∈I a partition of Any

25/36

Making the Type System Syntax-Directed

• The union elimination [∨] should be applied once on every distinct subexpression

⇒ We transform the expression in Maximal Sharing Canonical (MSC) form,
which gives a unique name to each distinct subexpression:

(f x , f x) ↝ bind u = f x in

bind v = (u,u) in v

[∨]
Γ ⊢ e′ ∶ s Γ, x ∶ s ∧ u ⊢ e ∶ t Γ, x ∶ s ∧ ¬u ⊢ e ∶ t

Γ ⊢ e{e′/x} ∶ t

⇒ [Bind]
Γ ⊢ a ∶ s (∀i ∈ I) Γ,u ∶ s ∧ ui ⊢ κ ∶ ti

Γ ⊢ bind u = a in κ ∶ ⋁i∈I ti
{ui}i∈I a partition of Any

25/36

Making the Rules Analytic

Solution to make the rules analytic:

• In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
→ the type decompositions s1 ∨ ⋅ ⋅ ⋅ ∨ sn to use in [∨] rules
→ the types of the parameters of λ-abstractions

• The pair [MSC ∣ annotation tree] uniquely encodes a derivation:

26/36

Making the Rules Analytic

Solution to make the rules analytic:

• In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
→ the type decompositions s1 ∨ ⋅ ⋅ ⋅ ∨ sn to use in [∨] rules
→ the types of the parameters of λ-abstractions

• The pair [MSC ∣ annotation tree] uniquely encodes a derivation:

26/36

Making the Rules Analytic

Solution to make the rules analytic:

• In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
→ the type decompositions s1 ∨ ⋅ ⋅ ⋅ ∨ sn to use in [∨] rules
→ the types of the parameters of λ-abstractions

• The pair [MSC ∣ annotation tree] uniquely encodes a derivation:

26/36

Making the Rules Analytic

Solution to make the rules analytic:

• In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
→ the type decompositions s1 ∨ ⋅ ⋅ ⋅ ∨ sn to use in [∨] rules
→ the types of the parameters of λ-abstractions

• The pair [MSC ∣ annotation tree] uniquely encodes a derivation:
[bind u = a in κ
´¹¹¸¹¹¶

MSC

∣ [∨] (. . . ,{(Int, . . .), (¬Int, . . .)})
´¹¹¹¸¹¹¹¶

annotation tree

]

↓

[Bind-Alg]

. . .

Γ ⊢ a ∶ s
. . .

Γ,u ∶ s ∧ Int ⊢ e ∶ t1

. . .

Γ,u ∶ s ∧ ¬Int ⊢ e ∶ t2

Γ ⊢ [bind u = a in κ ∣ [∨] (. . . ,{(Int, . . .), (¬Int, . . .)})] ∶ t1 ∨ t2

26/36

Making the Rules Analytic

Solution to make the rules analytic:

• In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
→ the type decompositions s1 ∨ ⋅ ⋅ ⋅ ∨ sn to use in [∨] rules
→ the types of the parameters of λ-abstractions

• The pair [MSC ∣ annotation tree] uniquely encodes a derivation:
[bind u = a in κ
´¹¹¸¹¹¶

MSC

∣ [∨] (. . . ,{(Int, . . .), (¬Int, . . .)})
´¹¹¹¸¹¹¹¶

annotation tree

]

↓

[Bind-Alg]

. . .

Γ ⊢ a ∶ s
. . .

Γ,u ∶ s ∧ Int ⊢ e ∶ t1

. . .

Γ,u ∶ s ∧ ¬Int ⊢ e ∶ t2

Γ ⊢ [bind u = a in κ ∣ [∨] (. . . ,{(Int, . . .), (¬Int, . . .)})] ∶ t1 ∨ t2

26/36

Contribution 2

Equivalence between declarative and algorithmic type system
e is typeable with the declarative type system

if and only if
there exists an annotation such that MSC(e) is typeable with the algorithmic system.

But how to infer annotation trees?

27/36

Contribution 2

Equivalence between declarative and algorithmic type system
e is typeable with the declarative type system

if and only if
there exists an annotation such that MSC(e) is typeable with the algorithmic system.

But how to infer annotation trees?

27/36

Reconstruction of the
Annotation Tree

Types & Core Language

Declarative Type System

Algorithmic Type System

Reconstruction of the Annotation Tree
Reconstruction of Type Decompositions
Reconstruction of the Type of Parameters
Demo

Conclusion and Perspective
27/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x = x in

bind y = false in

bind z = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x = x in

bind y = false in

bind z = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x = x in

bind y = false in

bind z = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x = x in

bind y = false in

bind z = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Any = x in

bind y ∶ false = false in

bind z ∶ Any = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Any = x in

bind y ∶ false = false in

bind z ∶ Any = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Any = x in

bind y ∶ false = false in

bind z ∶ Int ; ¬Int = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Int ; ¬Int = x in

bind y ∶ false = false in

bind z ∶ Int ; ¬Int = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Int ; ¬Int = x in

bind y ∶ false = false in

bind z ∶ Int ; ¬Int = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐

28/36

Reconstruction of Type Decompositions

• We use type-cases to deduce how to decompose union types:
when encountering (z∈Int) ? x : y,
we backtrack to the bind definition of z and split its type into Int ; ¬Int

• Then, we backpropagate this split on the variables used in the definition of z.

(id x∈Int) ? x : false with id ∶ α → α and x ∶ Any

bind x ∶ Int ; ¬Int = x in

bind y ∶ false = false in

bind z ∶ Int ; ¬Int = id x in

bind u = (z∈Int) ? x : y in

u

x

y

z

u ∶ Int

y

z

u ∶ false

Int

Any

Int

¬Int

Any

¬Int

u ∶ Int ∨ false ⇐ 28/36

Reconstruction of the Type of Parameters

• We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):

tally(t1, t2) = {σ ∣ t1σ ≤ t2σ}

For our subtyping relation, tallying is decidable.

• Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

• Each solution is considered in a separate branch.

29/36

Reconstruction of the Type of Parameters

• We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):

tally(t1, t2) = {σ ∣ t1σ ≤ t2σ}

For our subtyping relation, tallying is decidable.

• Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

• Each solution is considered in a separate branch.

29/36

Reconstruction of the Type of Parameters

• We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):

tally(t1, t2) = {σ ∣ t1σ ≤ t2σ}

For our subtyping relation, tallying is decidable.

• Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

• Each solution is considered in a separate branch.

29/36

Reconstruction of the Type of Parameters

• We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):

tally(t1, t2) = {σ ∣ t1σ ≤ t2σ}

For our subtyping relation, tallying is decidable.

• Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

• Each solution is considered in a separate branch.

29/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:γ, y:δ) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

find σ, such that

((Truthy→ true) ∧ (Falsy→ false))
´¹¹¸¹¹¹¶

ToBoolean

σ ≤ (γ → α)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x → result

σ

for some fresh type variable α representing the result of the application ⇒

{γ ↝ γ′ ∧ Truthy ; α ↝ α′ ∨ true} ; {γ ↝ γ′′ ∧ Falsy ; α ↝ α′′ ∨ false}

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:γ, y:δ) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

find σ, such that

((Truthy→ true) ∧ (Falsy→ false))
´¹¹¸¹¹¹¶

ToBoolean

σ ≤ (γ → α)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x → result

σ

for some fresh type variable α representing the result of the application ⇒

{γ ↝ γ′ ∧ Truthy ; α ↝ α′ ∨ true} ; {γ ↝ γ′′ ∧ Falsy ; α ↝ α′′ ∨ false}

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:γ, y:δ) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

find σ, such that

((Truthy→ true) ∧ (Falsy→ false))
´¹¹¸¹¹¹¶

ToBoolean

σ ≤ (γ → α)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x → result

σ

for some fresh type variable α representing the result of the application

⇒

{γ ↝ γ′ ∧ Truthy ; α ↝ α′ ∨ true} ; {γ ↝ γ′′ ∧ Falsy ; α ↝ α′′ ∨ false}

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:γ, y:δ) {

if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

find σ, such that

((Truthy→ true) ∧ (Falsy→ false))
´¹¹¸¹¹¹¶

ToBoolean

σ ≤ (γ → α)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x → result

σ

for some fresh type variable α representing the result of the application ⇒

{γ ↝ γ′ ∧ Truthy ; α ↝ α′ ∨ true} ; {γ ↝ γ′′ ∧ Falsy ; α ↝ α′′ ∨ false}
30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x: {γ′ ∧ Truthy ; γ′′ ∧ Falsy}, y:δ) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

find σ, such that

((Truthy→ true) ∧ (Falsy→ false))
´¹¹¸¹¹¹¶

ToBoolean

σ ≤ (γ → α)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x → result

σ

for some fresh type variable α representing the result of the application ⇒

{γ ↝ γ′ ∧ Truthy ; α ↝ α′ ∨ true} ; {γ ↝ γ′′ ∧ Falsy ; α ↝ α′′ ∨ false}
30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x: {γ′ ∧ Truthy ; γ′′ ∧ Falsy}, y:δ) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

Found two substitutions ⇒ we type the body twice (once for each hypothesis)

(γ′ ∧ Truthy,δ)
⇓

γ′ ∧ Truthy

(γ′′ ∧ Falsy,δ)
⇓
δ

((γ′ ∧ Truthy,δ) → γ′ ∧ Truthy) ∧ ((γ′′ ∧ Falsy,δ) → δ)

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x: {γ′ ∧ Truthy ; γ′′ ∧ Falsy}, y:δ) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

Found two substitutions ⇒ we type the body twice (once for each hypothesis)
(γ′ ∧ Truthy,δ)

⇓
γ′ ∧ Truthy

(γ′′ ∧ Falsy,δ)
⇓
δ

((γ′ ∧ Truthy,δ) → γ′ ∧ Truthy) ∧ ((γ′′ ∧ Falsy,δ) → δ)

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x: {γ′ ∧ Truthy ; γ′′ ∧ Falsy}, y:δ) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

Found two substitutions ⇒ we type the body twice (once for each hypothesis)
(γ′ ∧ Truthy,δ)

⇓
γ′ ∧ Truthy

(γ′′ ∧ Falsy,δ)
⇓
δ

((γ′ ∧ Truthy,δ) → γ′ ∧ Truthy) ∧ ((γ′′ ∧ Falsy,δ) → δ)

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x: {γ′ ∧ Truthy ; γ′′ ∧ Falsy}, y:δ) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean ∶ (Truthy→ true) ∧ (Falsy→ false)

Found two substitutions ⇒ we type the body twice (once for each hypothesis)
(γ′ ∧ Truthy,δ)

⇓
γ′ ∧ Truthy

(γ′′ ∧ Falsy,δ)
⇓
δ

((γ′ ∧ Truthy,δ) → γ′ ∧ Truthy) ∧ ((γ′′ ∧ Falsy,δ) → δ)

30/36

Contribution 3

• Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

• Several extensions: pattern matching, records, regular expression types (lists)

• Several optimizations: tree pruning, memoization, type simplification

31/36

https://www.cduce.org/dynlang/

Contribution 3

• Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

• Several extensions: pattern matching, records, regular expression types (lists)

• Several optimizations: tree pruning, memoization, type simplification

31/36

https://www.cduce.org/dynlang/

Contribution 3

• Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

• Several extensions: pattern matching, records, regular expression types (lists)

• Several optimizations: tree pruning, memoization, type simplification

31/36

https://www.cduce.org/dynlang/

Contribution 3

• Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

• Several extensions: pattern matching, records, regular expression types (lists)

• Several optimizations: tree pruning, memoization, type simplification

31/36

https://www.cduce.org/dynlang/

Demo (https://www.cduce.org/dynlang/)

type Falsy = False | "" | 0 | Null

type Truthy = ~Falsy

let to_boolean x =

if x is Truthy then true else false

type> (Truthy→ true) ∧ (Falsy→ false)

let logical_or (x,y) = if to_boolean x then x else y

type> ((α ∧ Truthy, Any) → α ∧ Truthy) ∧ ((Falsy, β) → β)

let id x = logical_or (x,x)

type> α → α

32/36

https://www.cduce.org/dynlang/

Demo (https://www.cduce.org/dynlang/)

let fixpoint = fun f ->

let delta = fun x -> f (fun v -> x x v) in

delta delta

type> ((α → β) → (α → β) ∧ γ) → (α → β) ∧ γ

let map_stub map f lst =

match lst with

| [] -> []

| (e,lst) -> (f e, map f lst)

let map = fixpoint map_stub

type> (Any→ [] → []) ∧ ((α → β) → [α+] → [β+])
33/36

https://www.cduce.org/dynlang/

Demo (https://www.cduce.org/dynlang/)

let rec filter (f: (α → Any) ∧ (β → Falsy)) (l: [(α ∨ β)∗]) =
match l with

| [] -> []

| (e,l) -> if f e is Truthy then (e, filter f l) else filter f l

end

type> (α → Any) ∧ (β → Falsy) → [(α ∨ β)∗] → [(α ∖ β)∗]

let filtered_list = filter to_boolean [42;37;null;42;"";4]

type> [(4 ∨ 37 ∨ 42)∗]

let test = map ((+)1) filtered_list

type> [Int∗]
34/36

https://www.cduce.org/dynlang/

Conclusion and Perspective

Types & Core Language

Declarative Type System

Algorithmic Type System

Reconstruction of the Annotation Tree

Conclusion and Perspective

34/36

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

My contributions:

• Declarative type system mixing union types, intersection types, and polymorphism
• Algorithmic type system, sound and complete, but that requires annotations
• Inference of these annotations using tallying and backtracking
• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

Publications:

• Science of Computer Programming: “Revisiting occurrence typing”
• POPL’22: “On Type-Cases, Union Elimination, and Occurrence Typing”
• POPL’24: “Polymorphic Type Inference for Dynamic Languages”

35/36

https://www.cduce.org/dynlang/

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

My contributions:

• Declarative type system mixing union types, intersection types, and polymorphism
• Algorithmic type system, sound and complete, but that requires annotations
• Inference of these annotations using tallying and backtracking
• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

Publications:

• Science of Computer Programming: “Revisiting occurrence typing”
• POPL’22: “On Type-Cases, Union Elimination, and Occurrence Typing”
• POPL’24: “Polymorphic Type Inference for Dynamic Languages”

35/36

https://www.cduce.org/dynlang/

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

My contributions:

• Declarative type system mixing union types, intersection types, and polymorphism
• Algorithmic type system, sound and complete, but that requires annotations
• Inference of these annotations using tallying and backtracking
• Fully implemented (OCaml, ∼ 4600 loc): https://www.cduce.org/dynlang/

Publications:

• Science of Computer Programming: “Revisiting occurrence typing”
• POPL’22: “On Type-Cases, Union Elimination, and Occurrence Typing”
• POPL’24: “Polymorphic Type Inference for Dynamic Languages”

35/36

https://www.cduce.org/dynlang/

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)
• Mutability of the state (references)
• Gradual typing, for a seamless integration and even more flexibility
• Language-specific features

(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)
• Mutability of the state (references)
• Gradual typing, for a seamless integration and even more flexibility
• Language-specific features

(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)

• Mutability of the state (references)
• Gradual typing, for a seamless integration and even more flexibility
• Language-specific features

(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)
• Mutability of the state (references)

• Gradual typing, for a seamless integration and even more flexibility
• Language-specific features

(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)
• Mutability of the state (references)
• Gradual typing, for a seamless integration and even more flexibility

• Language-specific features
(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

Future Work

Which features do we support?

• Overloaded functions, dynamic dispatch (type-cases)
• Generics (parametric polymorphism)
• Structural subtyping (pairs, records)

Which features are missing?

• Nominal subtyping (abstract data types)
• Mutability of the state (references)
• Gradual typing, for a seamless integration and even more flexibility
• Language-specific features

(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

	Motivations
	Types & Core Language
	Typing JavaScript's ``[language=JavaScript]!||!'' (Logical Or)
	Set-Theoretic Types
	Core Language

	Declarative Type System
	Mixing Union, Intersection, and HM Polymorphism
	Typing Type-Cases
	Capturing Overloaded Behaviors

	Algorithmic Type System
	Declarative = Non-algorithmic
	Making the Type System Syntax-Directed
	Making the Rules Analytic

	Reconstruction of the Annotation Tree
	Reconstruction of Type Decompositions
	Reconstruction of the Type of Parameters
	Demo

	Conclusion and Perspective

