Polymorphic Type Inference for Dynamic Languages

Reconstructing Types for Systems combining
Parametric, Ad-Hoc, and Subtyping Polymorphism

Mickaél Laurent, supervised by Giuseppe Castagna and Kim Nguyen
June 21, 2024

IRIF (Université Paris Cité, France), LMF (Université Paris-Saclay, France)

. °
I F
INSTITUT Laboratoire
DE RECHERCHE Méthodes
EN INFORMATIQUE Formelles
FONDAMENTALE

0/36

Introduction

country city pop density
USA Chicago 2665039 4398
USA Boston 675647 2911
France Gif-sur-Yvette = 22352 1900

France Pontamafrey 307 26

1/36

Introduction

country city pop density
USA Chicago 2665039 4398
¢ s USA Boston 675647 2911
France Gif-sur-Yvette = 22352 1900
France Pontamafrey 307 26

How to retrieve the population of a city?

1/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());
let city_index =

rdr.headers () .unwrap() .iter ()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h]| == "pop") .unwrap(Q);
for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index) .parse() .unwrap());

None

2/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());
let city_index =

rdr.headers () .unwrap() .iter ()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h]| == "pop") .unwrap(Q);
for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index) .parse() .unwrap());

None

2/36

get_population in Rust

fn get_population(data: &str, city: &str) -> Option<u32> {

let mut rdr = csv::Reader::from_reader(data.as_bytes());
let city_index =

rdr.headers () .unwrap() .iter ()

.position(|h| h == "city").unwrap();

let pop_index = rdr.headers().unwrap().iter()

.position(|h]| == "pop") .unwrap(Q);
for result in rdr.records() {

let record = result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index) .parse() .unwrap());

None

2/36

get_population in Rust

fn get_population(data: &str,

city: &str)
let mut rdr

-> Option<u32> {
csv::Reader:: from_reader (data.as_bytes());

let city_index = rdr.headers().unwrap().iter()
.position(|h]|

== "city").unwrapQ;
let pop_index

rdr.headers () .unwrap() .iter ()
.position(|h]|

"pop") .unwrap(Q);
for result in rdr.records() {

let record =

result.unwrap();

if record.get(city_index).unwrap() == v {

return Some(record.get(pop_index).parse().unwrap());
}

None

2/36

get_population in Python

def get_population(data, city):
d = csv.DictReader(StringIO(data))
for row in d:
if row[’city’] == city:
return int(row[’pop’])

return None

3/36

get_population in Python

def get_population(data, city):
d = csv.DictReader(StringIO(data))
for row in d:
if row[’city’] == city:
return int(row[’pop’])

return None

No need to unwrap or pattern-match the result like in Rust.

In Rust:

get_population(data, "Gif-sur-Yvette").unwrap() / 1000 // 22
In Python:

get_population(data, "Gif-sur-Yvette") // 1000 # 22

3/36

get_population in Python

def get_population(data, city):
d = csv.DictReader(StringIO(data))
for row in d:
if row[’city’] == city:
return int(row[’pop’])

return None

def in_thousands(n):
if type(n) is int:
return n // 1000
else:

return None

3/36

get_population in Python

def get_population(data, city):
d = csv.DictReader(StringIO(data))
for row in d:
if row[’city’] == city:
return int(row[’pop’])

return None

def in_thousands(n):
if type(n) is int:
return n // 1000
else:

return None

in_thousands(get_population(data, "Gif-sur-Yvette")) # 22

in_thousands (get_population(data, "Jpeg-sur-Yvette")) # None 3/36

Dynamic Languages

v~ Programmer does not need to write type annotations

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime

= Flexible, concise, good for experimenting and prototyping

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime
= Flexible, concise, good for experimenting and prototyping

x It is not clear where program can fail (no explicit unwrap, etc.)

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime
= Flexible, concise, good for experimenting and prototyping

x It is not clear where program can fail (no explicit unwrap, etc.)
x No type safety guarantees (TypeError exceptions can be raised at runtime)

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime
= Flexible, concise, good for experimenting and prototyping

x It is not clear where program can fail (no explicit unwrap, etc.)
x No type safety guarantees (TypeError exceptions can be raised at runtime)
x No static type = provide little information to the programmer (documentation) ...

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime
= Flexible, concise, good for experimenting and prototyping

x It is not clear where program can fail (no explicit unwrap, etc.)
x No type safety guarantees (TypeError exceptions can be raised at runtime)
x No static type = provide little information to the programmer (documentation) ...

x ... and to the toolchain (optimizer, linter, auto-complete, etc.)

4/36

Dynamic Languages

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

= No need to explicitly wrap/unwrap data (Some and None, unwrap, etc.)
v~ Overloaded functions, via explicit type-cases or via dynamic dispatch:

which implementation to execute is determined at runtime
= Flexible, concise, good for experimenting and prototyping

x It is not clear where program can fail (no explicit unwrap, etc.)
x No type safety guarantees (TypeError exceptions can be raised at runtime)
x No static type = provide little information to the programmer (documentation) ...

x ... and to the toolchain (optimizer, linter, auto-complete, etc.)

= Unsafe, bad for production code and maintenance of large projects

4/36

Goal: statically typing dynamic languages without hindering their flexibility.

5/36

Goal: statically typing dynamic languages without hindering their flexibility.

v~ Programmer does not need to write type annotations
v~ Functions can accept and return data of different types

v~ Overloaded functions, via explicit type-cases or via dynamic dispatch

5/36

Goal: statically typing dynamic languages without hindering their flexibility.
v~ Programmer does not need to write type annotations
= Static types should be inferred (as much as possible)

v~ Functions can accept and return data of different types

v~ Overloaded functions, via explicit type-cases or via dynamic dispatch

5/36

Goal: statically typing dynamic languages without hindering their flexibility.

v~ Programmer does not need to write type annotations
= Static types should be inferred (as much as possible)

v~ Functions can accept and return data of different types
= Our type system should feature union types and subtyping

v~ Overloaded functions, via explicit type-cases or via dynamic dispatch

5/36

Goal: statically typing dynamic languages without hindering their flexibility.

v~ Programmer does not need to write type annotations
= Static types should be inferred (as much as possible)

v~ Functions can accept and return data of different types
= Our type system should feature union types and subtyping

v~ Overloaded functions, via explicit type-cases or via dynamic dispatch

= Qur type system should be able to type type-cases
and capture overloaded behaviors using intersection types

5/36

Goal: statically typing dynamic languages without hindering their flexibility.

v~ Programmer does not need to write type annotations
= Static types should be inferred (as much as possible)

v~ Functions can accept and return data of different types
= Our type system should feature union types and subtyping

v~ Overloaded functions, via explicit type-cases or via dynamic dispatch
= Qur type system should be able to type type-cases
and capture overloaded behaviors using intersection types

My contribution: conception of a type system for a language with type-cases, featuring

many forms of polymorphism (parametric, ad-hoc, subtyping) and a type inference.
5/36

Summary

Types & Core Language
Declarative Type System
Algorithmic Type System

Reconstruction of the Annotation Tree

Conclusion and Perspective

6/36

Types & Core Language

Types & Core Language
Typing JavaScript's “||" (Logical Or)
Set-Theoretic Types
Core Language

6/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {
if (ToBoolean(x)) { return x; } else { return y; }

3
with ToBoolean:

= For false,null,0,+0.0,"", etc. =~ = returns false

= For other values = returns true

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {
if (ToBoolean(x)) { return x; } else { return y; }

3
with ToBoolean:

= For false,null,0,+0.0,"", etc. =~ = returns false

Falsy
= For other values = returns true
—_—

Truthy

type Falsy = false | null | 0 | 0.0 |
type Truthy = ~Falsy

ToBoolean: (Falsy — false) A (Truthy — true)
7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {
if (ToBoolean(x)) { return x; } else { return y; }

}
with ToBoolean: (Falsy — false) A (Truthy — true)

LogicalOr: Va, (.
((aATruthy, Any) - aATruthy)
A ((Falsy,) - f)

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}
with ToBoolean: (Falsy — false) A (Truthy — true)

and LogicalOr: Va,S. ((aATruthy,Any) - aATruthy) A ((Falsy,) - 5)
Challenges:

= Type narrowing: type the first branch under the hypothesis that x is Truthy

= union types

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {

if (ToBoolean(x)) { return x; } else { return y; }

}
with ToBoolean: (Falsy — false) A (Truthy — true)

and LogicalOr: Va,S. ((aATruthy,Any) - aATruthy) A ((Falsy,) - 5)
Challenges:
= Type narrowing: type the first branch under the hypothesis that x is Truthy

= union types
= Capture overloaded behaviors: LogicalOr has different behaviors depending on x

= intersection types

7/36

Example: Typing JavaScript’s “||” (Logical Or)

function LogicalOr (x, y) {
if (ToBoolean(x)) { return x; } else { return y; }
}
with ToBoolean: (Falsy — false) A (Truthy — true)
and LogicalOr: Va,S. ((aATruthy,Any) - aATruthy) A ((Falsy,) — ()

Challenges:

= Type narrowing: type the first branch under the hypothesis that x is Truthy
= union types

= Capture overloaded behaviors: LogicalOr has different behaviors depending on x
= intersection types

s Capture genericity: LogicalOr returns its first or second parameter, unchanged

= parametric polymorphism
7/36

Set-Theoretic Types [Frisch, 2004]

Constants ¢ == false|true|0|1]...
Basic Types b = Bool|Int|..
Set-Theoretic Types t == c|b|t— t|txt|tVt|tAt|-t|Empty|Any

8/36

Set-Theoretic Types [Frisch, 2004]

Constants ¢ == false|true|0|1]...
Basic Types b = Bool|Int|..
Set-Theoretic Types t == c|b|t— t|txt|tVt|tAt|-t|Empty|Any

Types are interpreted as sets of values:

[false] ={false} [Any] =V (with V the set of all values)
[Int] ={0,1,...} [Empty] =&

8/36

Set-Theoretic Types [Frisch, 2004]

Constants ¢ == false|true|0|1]...
Basic Types b = Bool|Int|..
Set-Theoretic Types t == c|b|t— t|txt|tVt|tAt|-t|Empty|Any

Types are interpreted as sets of values:

[false] ={false} [Any] =V (with V the set of all values)
[Int] ={0,1,...} [Empty] =&

[t1 x o] =[t1] = [t2] [t1 Vv] =[t1] v [t2] [-t] =V\[t]
[t1 > o] =[])" [t 7 2] = [1a] N [22]

8/36

Set-Theoretic Types [Frisch, 2004]

Constants ¢ == false|true|0|1]...
Basic Types b = Bool|Int|..
Set-Theoretic Types t == c|b|t— t|txt|tVt|tAt|-t|Empty|Any

Types are interpreted as sets of values:

[false] ={false} [Any] =V (with V the set of all values)
[Int] ={0,1,...} [Empty] =&
[trx] =[t:] x [2] [t v o] =[ta] v [22] [-t] =V~[t]
[t~ t2] = "[e2] ™" [t 7 2] =[a] 0[]

Semantic subtyping: t <ty el [t1] < [t2]

8/36

Set-Theoretic Types [Frisch, 2004] [Castagna and Xu, 2011]

Constants ¢ == false|true|0|1]...
Basic Types b = Bool|Int|...
Set-Theoretic Types t == c|b|t—>t|txt|tVvt|tAt|-t|Empty]|Any|a

Types are interpreted as sets of values:

[false] ={false} [Any] =V (with V the set of all values)
[Int] ={0,1,...} [Empty] =&
[t x 2] =[ta] x [2] [trv 2] =[ta] v [2] [-t]=V\[i]
[t1 > B =[] [t1A 2] =[] N [22]
. . def def
Semantic subtyping: t1 <ty < Vo.to<tho < Vo.[tio] € [t0o]

8/36

Syntax and Semantics

Expressions e c|x|\x.e|lee|(e e)|mie|(ect) 7eze

Values v

c|\x.e|(v,v)

with the usual call-by-value semantics (w/ leftmost outermost strategy):

(Ax.e)v ~ e{v/x}
m(vi,v2) ~ w»n
m(vi,v2) ~ w»

(vet) ?e1:e0 ~ € if v has type t

(vet) ?e1:e0 ~ & otherwise

9/36

Declarative Type System

Declarative Type System
Mixing Union, Intersection, and HM Polymorphism
Typing Type-Cases
Capturing Overloaded Behaviors

9/36

Usual Rules

[Var] ————— x edom(I)

[Const]
N-c:c M x:T(x)

10/36

Usual Rules

[Const] [Var] ————— x edom(I)
N-c:c M x:T(x)
ety N6t lFe:ty x b ety xty
[xI] [xEj] —————— [xB)] ———
M- (e1,e):t1 xtn M-me:t [~ me:t

10/36

Usual Rules

[Const] —— [Var] ————— x edom(I)
N-c:c M x:T(x)
ety Ne:tb ety xt ety Xt
[x1] [XEi] ———— B ———
M- (e1,e):t1 xtn M-me:ty [+ me:t
Mx:ti-e:t lFer:ti >t TrHe:
(-] [~E]
N)Ax.e:t; > b e et

10/36

Usual Rules

[Const] —— [Var] ————— x edom(I)
N-c:c M x:T(x)
ety Ne:tb ety xt ety Xt
[x1] [XEi] ———— B ———
M- (e1,e):t1 xtn M-me:ty [+ me:t
Mx:ti-e:t lFer:ti >t TrHe:
(-] [~E]
N)Ax.e:t; > b e et

l—e:t t<t

(<]
l—e:t
10/36

Mixing Union, Intersection, and HM Polymorphism

For genericity

l—e:t [He:t

[Gen]

n Prenex polymorphism
MN-e:t{y~a} M-e:to

[Hindley, 1969, Milner, 1978]

Union types

Intersection types

For overloading [MacQueen et al., 1986]| For type narrowing

[Coppo et al., 1981]

Barbanera et al., F-ée:spvsy
l—e:ty l—e:t [

Mx:s;-e:t Mx:syr-e:t

I-e{e/x}:t

(]]

le:ti At

11/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: «, 5 € Varsp
) i Vars = Varsp uVarsy,
Some type variables are monomorphic: «,d € Varsy,

12/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: «, 5 € Varsp
) i Vars = Varsp uVarsy,
Some type variables are monomorphic: «,d € Varsy,

We can instantiate polymorphic type variables:
Ne

0t
[Inst} ————— dom(o) < Varsp
M-e:to

12/36

Instantiation and Generalization (Hindley Milner)

Some type variables are polymorphic: «, 5 € Varsp
) i Vars = Varsp uVarsy,
Some type variables are monomorphic: «,d € Varsy,

We can instantiate polymorphic type variables:

N—e:t
[Inst} ————— dom(o) < Varsp
M-e:to

We can generalize a monomorphic type variable v into a polymorphic type variable «
(only if v is not bound to the environment):

c [—e:t .
[Gen] r'_e:t{fyva}’ygévars()

12/36

AX.X
(id 42, id true)

let id
let test

13/36

AX.X
(id 42, id true)

let id
let test

We first type id under the empty environment &:

[Var]
X:iYkEXx:1y
[~] with v monomorphic
DT AXX:y >

13/36

AX.X
(id 42, id true)

let id
let test

We first type id under the empty environment &:

[Var]
X:iYE Xty
[~] with v monomorphic
DT AXX:y >
[Gen] with « polymorphic
B IxXxia—>«

13/36

AX.X
(id 42, id true)

let id
let test

We first type id under the empty environment &:

[Var]
X:iYE Xty
[~] with v monomorphic
DT AXX:y >
[Gen] with « polymorphic
B IxXxia—>«

We then type test under the environment I' = (id: a - a):

[Var]
MN-id:a-a«a [Const]
[Inst]
E] [-id:42 >42 T +-42:42
[+id 42:42

13/36

AX.X
(id 42, id true)

let id
let test

We first type id under the empty environment &:

[Var]
X:iYE Xty
[~] with v monomorphic
DT AXX:y >
[Gen] with « polymorphic
B IxXxia—>«

We then type test under the environment I' = (id: a - a):

[Var] [Var]
MN-id:a-a [Const] MN-id:a-a [Const]
[Inst] [Inst]
E] [Fid:42 542 [+42:42 g [+id:true »> true [+ true:true
—E —E
[+id 42:42 [+ id true:true

13/36

AX.X
(id 42, id true)

let id
let test

We first type id under the empty environment &:

[Var]
X:iYE Xty
[~] with v monomorphic
DT AXX:y >
[Gen] with « polymorphic
B IxXxia—>«

We then type test under the environment I' = (id: a - a):

[Var] [Var]
MN-id:a-a [Const] MN-id:a-a [Const]
[Inst] [Inst]
E] [Fid:42 542 [+42:42 g [+id:true »> true [+ true:true
—E —E
[+id 42:42 [+ id true:true

[x1] - -
I+ (id 42,id true): 42 x true 13/36

Intersection

Intersection introduction:

l—e:ty et

(7]
e t1 Al

14/36

Intersection

Intersection introduction:

l—e:ty et

(7]
e t1 Al

Intersection elimination can be derived from subsumption:

M-e:t l—e:t1 A
[(] —t'<t _,]——tAab<thy
M—e:t Ml—e:ty

14/36

For instance, we can type Ax.x:

15/36

For instance, we can type Ax.x:

= A first time for the domain Bool, yielding Bool — Bool,

[Var]
X :Bool + x : Bool

[=1]

I+ Ax.x : Bool — Bool

15/36

For instance, we can type Ax.x:

= A first time for the domain Bool, yielding Bool — Bool,

= A second time for the domain Int, yielding Int — Int,

[Var] [Var]
X :Bool + x : Bool X:Int+x:1Int

[=1] (=]

I+ Ax.x : Bool — Bool J+ Ax.x:Int — Int

15/36

For instance, we can type Ax.x:

= A first time for the domain Bool, yielding Bool — Bool,
= A second time for the domain Int, yielding Int — Int,

= Then, we can use the intersection introduction rule to derive the type
(Bool - Bool) A (Int — Int)

[Var] [Var]
X :Bool + x : Bool X:Int+x:1Int

[~1] [~1]

I+ Ax.x : Bool — Bool J+ Ax.x:Int — Int

[A]
@+ Ax.x : (Bool - Bool) A (Int — Int)

15/36

Union

Union introduction can be derived from subsumption:

M-e:t [Fe:ty
J—t'<t .,]——th<tvh
—e:t lFe:tjVvip

16/36

Union

Union introduction can be derived from subsumption:

M-e:t [Fe:ty
J—t'<t .,]——th<tvh
—e:t lFe:tjVvip

Union elimination:

N-e':s1vs MNx:si-e:t Mx:ss-e:t

M-efe/x}:t

V]

16/36

(f42,f42) with f : Int — Bool

17/36

(f42,f42) with f : Int — Bool
R/_/R/_/
X X

with x :Bool ~ true Vv false

17/36

(f42,f42) with f : Int — Bool
R/_/R/_/
X X

with x :Bool ~ true Vv false

We type (x,x):

= First, by assuming that x: true = true x true,

17/36

(f42,f42) with f : Int — Bool
R/_/R/_/
X X

with x :Bool ~ true Vv false

We type (x,x):

= First, by assuming that x: true = true x true,

= Then, by assuming that x: false = false x false

17/36

(f42,f42) with f : Int — Bool
‘H/_/‘H/_/
X X

with x :Bool ~ true Vv false

We type (x,x):

= First, by assuming that x: true = true x true,

= Then, by assuming that x: false = false x false

l—f 42:truev false
I x:truet (x,x):true x true I x:falsetr (x,x):false x false

M I+ (x,x){(f 42)/x} : (true x true) v (false x false)

17/36

Unsound in the presence of polymorphic type variables:

(f42,f42) with f : Int - Bool

18/36

Unsound in the presence of polymorphic type variables:

(f42,f42) with f : Int - Bool
R/_/R/_/
X X

with x : Bool ~ (Bool A @) v (Bool A =) (with a polymorphic)

18/36

Unsound in the presence of polymorphic type variables:

(f42,f42) with f : Int - Bool
R/_/R/_/
X X

with x : Bool ~ (Bool A @) v (Bool A =) (with a polymorphic)
We type (x,x):

= First, by assuming that x : Bool Aa = Empty (by substituting « by Empty),

18/36

Unsound in the presence of polymorphic type variables:

(f42,f42) with f : Int - Bool
R/_/R/_/
X X

with x : Bool ~ (Bool A @) v (Bool A =) (with a polymorphic)
We type (x,x):

= First, by assuming that x : Bool Aa = Empty (by substituting « by Empty),
» Then, by assuming that x : BoolA -« = Empty (by substituting o by Any)

18/36

Unsound in the presence of polymorphic type variables:

(f42,f42) with f : Int - Bool
R/_/R/_/
X X

with x : Bool ~ (Bool A @) v (Bool A =) (with a polymorphic)
We type (x,x):
= First, by assuming that x : Bool Aa = Empty (by substituting « by Empty),

» Then, by assuming that x : BoolA -« = Empty (by substituting o by Any)

We must prevent the type decomposition from containing polymorphic type variables:
l-¢e':s Mx:sAure:t I x:sA-ure:t

M-e{e/x}:t

v

where u does not contain any polymorphic type variable: vars(u) nVarsp = @
18/36

Typing Type-Cases

Two cases:

(vet) 7e1:e0 ~ ¢ if v has type t

(vet) ?e1:ep ~ e otherwise

19/36

Typing Type-Cases

Two cases:
(vet) 7e1:e0 ~ ¢ if v has type t
(vet) ?e1:ep ~ e otherwise
Two rules:
[]Fl—e:t ety [—e:-t -e:b
€1 €2
- (eet) ?e1ien: g [~ (eet) 7e1ier: 1o

19/36

Typing Type-Cases: Union Elimination and Type Narrowing

MN-ée':s
[]F,X:S/\m—e:t M x:sA-ure:t []Fl—e:t e :t1 : [-e:-t lNe:t
Vv €1 €2
M-efe'/x}:t M (eet) 7er:en: ty M (eet) 7er:er: by

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

AX. (xeInt)? x +1: false

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

N = { x: Any } (xeInt)? x +1: false

X :Any - (xeInt) ?x + 1:false: Int v false

[~1]

@+ Ax. (xeInt) ?x + l:false: Any — (Int v false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

Fl-e':s
Mx:sAnure:t x:sAn-ure:t

M-efe'/x}:t

V]

N = { x: Any } (xeInt)? x +1: false
~——
Int v -Int
x:Int + (xeInt) ?x + 1:false: Int x:-Int+ (xeInt) ?x + 1:false: false

[v]

X :Any - (xeInt) ?x + 1:false: Int v false

[~1]

@+ Ax. (xeInt) ?x + l:false: Any — (Int v false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[He:t MNe:t1

M- (eet) ?7e1:e0: 17

r = x: An xeInt)? x +1:
tox: fny (etme)? 2
Int v Int Int

x:Int+x+1:Int

x:Int + (xeInt) ?x + 1:false: Int x:-Int+ (xeInt) ?x + 1:false: false

X :Any - (xeInt) ?x + 1:false: Int v false

@+ Ax. (xeInt) ?x + l:false: Any — (Int v false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

[-e:-t lNe:t

[e2]
M- (eet) ?7e1:e0:
N = { x: Any } (x€eInt)? : false

— el

v -Int —Int
] x:Int+x+1:Int] x:—Int + false: false
€1 €2

x:Int + (xeInt) ?x + 1:false: Int x:-Int+ (xeInt) ?x + 1:false: false

X :Any - (xeInt) ?x + 1:false: Int v false

@+ Ax. (xeInt) ?x + l:false: Any — (Int v false)

20/36

Typing Type-Cases: Union Elimination and Type Narrowing

MN-ée':s
[]F,X:S/\m—e:t M x:sA-ure:t []Fl—e:t e :t1 : [-e:-t lNe:t
Vv €1 €2
M-efe'/x}:t M (eet) 7er:en: ty M (eet) 7er:er: by
Ax. (xeInt)? x +1: false
] x:Int+x+1:Int] x:—Int + false: false
€1 €2
x:Int + (xeInt) ?x + 1:false: Int x:-Int+ (xeInt) ?x + 1:false: false

X :Any - (xeInt) ?x + 1:false: Int v false

@+ Ax. (xeInt) ?x + 1l:false: Any — (Int v false)

20/36

Capturing Overloaded Behaviors: Intersection Introduction

lFe:t; Tre:b [Fe:t le:ty [~e:-t et

(Al €1 €
le:tjnt [(eet) ?e1:e0: 1y - (eet) e b

21/36

Capturing Overloaded Behaviors: Intersection Introduction

Ax. (xeInt) ? x+1 : false

21/36

Capturing Overloaded Behaviors: Intersection Introduction

r = { x:Int } (xeInt) ? x+1 : false

x:Int + (xeInt) ?x+ 1:false: Int

=1

@+ Ax. (xeInt) ?x + 1:false: Int — Int

21/36

Capturing Overloaded Behaviors: Intersection Introduction

MN-e:t le:ty

M- (eet) ?7e1:e0: 1y

r = { x:Int } (xeInt) ? x+1:

x:Int+x+1:Int

1]

x:Int + (xeInt) ?x+ 1:false: Int

=1

@+ Ax. (xeInt) ?x + 1:false: Int — Int

21/36

Capturing Overloaded Behaviors: Intersection Introduction

N = { x:=Int } (xeInt) ? x+1 : false

x:Int+x+1:Int

[e1]
1] x:Int + (xeInt) ?x+ 1:false: Int] x:-Int + (xeInt) ?x+ 1:false: false
—I —I
@+ Ax. (xeInt) ?x + 1:false: Int — Int @+ Ax. (xeInt) ?x + 1:false: -Int - false

21/36

Capturing Overloaded Behaviors: Intersection Introduction

MN-e:-t et

[(eet) 7e1:ep: 1

N = { x:=Int } (xeInt) ? : false
- x:Int+x+1:Int] x:-Int - false: false
€1 €2
1] x:Int + (xeInt) ?x+ 1:false: Int] x:-Int + (xeInt) ?x+ 1:false: false
—I —I
@+ Ax. (xeInt) ?x + 1:false: Int — Int @+ Ax. (xeInt) ?x + 1:false: -Int - false

21/36

Capturing Overloaded Behaviors: Intersection Introduction

lFe:t; Tre:b

[A]
le:tjnt

Ax. (xeInt) ? x+1 : false

- x:Int+x+1:Int] x:-Int - false: false
€ €
1] x:Int + (xeInt) ?x+ 1:false: Int] x:-Int + (xeInt) ?x+ 1:false: false
—I —I
@+ Ax. (xeInt) ?x + 1:false: Int — Int @+ Ax. (xeInt) ?x + 1:false: -Int - false

(]

@+ Ax. (xeInt) ?x + l:false: (Int — Int) A (-Int — false)

(Int - Int) A (-Int —> false) < Any — (IntVvfalse)

21/36

Type safety of the declarative type system
For every expression e, if @+ e: t, then:

— either e reduces to a value v of type t,

— or e diverges.

22/36

Type safety of the declarative type system
For every expression e, if @+ e: t, then:

— either e reduces to a value v of type t,

— or e diverges.

However, this type system is not algorithmic.

How to turn it into an algorithm?

22/36

Algorithmic Type System

Algorithmic Type System
Declarative = Non-algorithmic
Making the Type System Syntax-Directed
Making the Rules Analytic

22/36

Declarative = Non-algorithmic

R = ERCORD x:Int+x+1:Int x:-Int - false: false
. N et Wome 2 N T - A o Gt e o G v Ao
@+ Ax. (xeInt) 7x +1:false: Int - Int @+ Ax. (xeInt) 7x + 1:false: -Int > false x:Any - (x€Int) 7x +1:false: Int v false
Ol @+ Ax. (xeInt) 7x+ 1:false: (Int — Int) A (~Int - false) =1 &+ Ax. (xeInt) 7x + 1:false : Any — (Int v false)

Many possible derivations:

23/36

Declarative = Non-algorithmic

R = ERCORD x:Int+x+1:Int x:-Int - false: false
. N et Wome 2 N T - A o Gt e o G v Ao
@+ Ax. (xeInt) 7x +1:false: Int - Int @+ Ax. (xeInt) 7x + 1:false: -Int > false x:Any - (x€Int) 7x +1:false: Int v false
Ol @+ Ax. (xeInt) 7x+ 1:false: (Int — Int) A (~Int - false) =1 &+ Ax. (xeInt) 7x + 1:false : Any — (Int v false)

Many possible derivations:

= Some rules can be applied on every expression (the system is not syntax-directed):

= Union elimination [V] = Instantiation [Inst]

= Intersection introduction [A] = Subsumption [<]

23/36

Declarative = Non-algorithmic

R = ERCORD x:Int+x+1:Int x:-Int - false: false
. N et Wome 2 N T - A o Gt e o G v Ao
@+ Ax. (xeInt) 7x +1:false: Int - Int @+ Ax. (xeInt) 7x + 1:false: -Int > false x:Any - (x€Int) 7x +1:false: Int v false
Ol @+ Ax. (xeInt) 7x+ 1:false: (Int — Int) A (~Int - false) =1 &+ Ax. (xeInt) 7x + 1:false : Any — (Int v false)

Many possible derivations:

= Some rules can be applied on every expression (the system is not syntax-directed):

= Union elimination [V] = Instantiation [Inst]

= Intersection introduction [A] = Subsumption [<]

= Some premises cannot be guessed from the conclusion (rules are not analytic):
= The types forming the union in [V]

= The type of the parameter in [—l]

23/36

Declarative = Non-algorithmic

R = ERCORD x:Int+x+1:Int x:-Int - false: false
. N et Wome 2 N T - A o Gt e o G v Ao
@+ Ax. (xeInt) 7x +1:false: Int - Int @+ Ax. (xeInt) 7x + 1:false: -Int > false x:Any - (x€Int) 7x +1:false: Int v false
Ol @+ Ax. (xeInt) 7x+ 1:false: (Int — Int) A (~Int - false) =1 &+ Ax. (xeInt) 7x + 1:false : Any — (Int v false)

Many possible derivations:

= Some rules can be applied on every expression (the system is not syntax-directed):

= Union elimination [V] = Instantiation [Inst]

= Intersection introduction [A] = Subsumption [<]

= Some premises cannot be guessed from the conclusion (rules are not analytic):
= The types forming the union in [V]
= The type of the parameter in [—l]

How to make the type system algorithmic?

23/36

Making the Type System Syntax-Directed

Solution to make the type system syntax directed without loosing generality:

= Subsumption [<] and instantiation [Inst] are embedded in destructor rules:

24/36

Making the Type System Syntax-Directed

Solution to make the type system syntax directed without loosing generality:

= Subsumption [<] and instantiation [Inst] are embedded in destructor rules:

e s>t Fex:s N—e:t N—e:t t<t
[—E] + [Inst] — + [<]
Fee:t —e:to M-e:t
[+~ ep:t; with tjo; <s—>t [+ e :tr with thopr <s
= [App]
-ee:t

24/36

Making the Type System Syntax-Directed

= The union elimination [v] should be applied once on every distinct subexpression

25/36

Making the Type System Syntax-Directed

= The union elimination [v] should be applied once on every distinct subexpression

= We transform the expression in Maximal Sharing Canonical (MSC) form,
which gives a unique name to each distinct subexpression:

(f x,f x) ~ bindu=fxin

bind v = (u,u) in v

25/36

Making the Type System Syntax-Directed

= The union elimination [v] should be applied once on every distinct subexpression

= We transform the expression in Maximal Sharing Canonical (MSC) form,
which gives a unique name to each distinct subexpression:

f x in

(f x,f x) ~ bind u
bind v

(u,u) in v

F—é':s Mx:sAure:t Tx:sA-ure:t

L Mee{e/x}:t

MN-a:s (Viel) Tu:sAnuj-k:t
= [Bind]

{U;}ies a partition of Any
- bindu=aink Vit

25/36

Making the Rules Analytic

Solution to make the rules analytic:

26/36

Making the Rules Analytic

Solution to make the rules analytic:

= |n addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
— the type decompositions s; v ---V s, to use in [v] rules
— the types of the parameters of A-abstractions

26/36

Making the Rules Analytic

Solution to make the rules analytic:

= |n addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
— the type decompositions s; v ---V s, to use in [v] rules
— the types of the parameters of A-abstractions

= The pair [MSC | annotation tree] uniquely encodes a derivation:

26/36

Making the Rules Analytic

Solution to make the rules analytic:

= In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
— the type decompositions s; Vv --- V' s, to use in [V] rules
— the types of the parameters of A-abstractions

= The pair [MSC | annotation tree] uniquely encodes a derivation:
[bindu=aink | [v] (...,{(Int,...),(-Int,...)})]

MSC annotation tree

26/36

Making the Rules Analytic

Solution to make the rules analytic:

= In addition of a MSC form, our algorithmic type system takes as input
an annotation tree that specifies:
— the type decompositions s; Vv --- V' s, to use in [V] rules
— the types of the parameters of A-abstractions

= The pair [MSC | annotation tree] uniquely encodes a derivation:
[bindu=aink | [v] (...,{(Int,...),(-Int,...)})]

MSC »L annotation tree

l—a:s Tu:sAnIntre:ty lu:sa-Intre:t

MN- [bind u=ain & | [V] (...,{(Int,...),(=Int,...)})] : 1V 2

[Bind-Alg]

26/36

Equivalence between declarative and algorithmic type system

e is typeable with the declarative type system
if and only if
there exists an annotation such that MSC(e) is typeable with the algorithmic system.

27/36

Equivalence between declarative and algorithmic type system

e is typeable with the declarative type system
if and only if
there exists an annotation such that MSC(e) is typeable with the algorithmic system.

But how to infer annotation trees?

27/36

Reconstruction of the
Annotation Tree

Reconstruction of the Annotation Tree
Reconstruction of Type Decompositions
Reconstruction of the Type of Parameters
Demo

27/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

bindx = xin

bindy = falsein
bindz = id xin

bindu = (zelnt) ?x:yin
u

28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

bindx: Any = xin
bindy: false = falsein
bindz: Any = id xin
bindu = (zelnt) ?x:yin

u 28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

bindx: Any = xin
bindy: false = falsein
bindz: Any = id xin
bindu = (zelnt) ?x:yin

u 28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

bindx: Any = xin

bindy: false = falsein
bindz: Int; -Int = id xin
bindu = (zelnt) ?x:yin

u 28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

bindx: Int; -Int = xin
bindy: false = falsein
bindz: Int; -Int = id xin
bindu = (zelnt) ?x:yin

u 28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

X
bindx: Int; -Int = xin In/ \Int
y y

bindy: false = falsein
Any Any
bindz: Int; -Int = id xin 2 ,
i = ?X* i : :
bindu (zeInt) ?7x:yin Int | ' ot
u - -

u:Int u:false 28/36

Reconstruction of Type Decompositions

= We use type-cases to deduce how to decompose union types:
when encountering (zeInt) 7x:y,
we backtrack to the bind definition of z and split its type into Int ; —Int

= Then, we backpropagate this split on the variables used in the definition of z.

(id xeInt) ?7x:false with id:a—« and x:Any

X
bindx: Int; -Int = xin In/ \Int
y y

bindy: false = falsein
Any Any
bindz: Int; -Int = id xin 2 ,
i = ?X* i : :
bindu (zeInt) ?7x:yin Int | ' ot
u - -

u:Intvfalse <« u:Int u:false 28/36

Reconstruction of the Type of Parameters

= We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

29/36

Reconstruction of the Type of Parameters

= We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):
tally(ty, t2) = {o|tio < tro}

For our subtyping relation, tallying is decidable.

29/36

Reconstruction of the Type of Parameters

= We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):
tally(ty, t2) = {o|tio < tro}

For our subtyping relation, tallying is decidable.

= Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

29/36

Reconstruction of the Type of Parameters

= We use tallying to find type substitutions and to infer the type of parameters
(just like Algorithm W uses unification).

Tallying [Castagna et al., 2015] (“unification, but with subtyping constraints”):
tally(ty, t2) = {o|tio < tro}
For our subtyping relation, tallying is decidable.

= Solutions are characterized by a principal finite set of substitutions
(compared to at most one principal substitution for unification).

= Each solution is considered in a separate branch.

29/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:7y, y:5) {

if (ToBoolean(x)) { return x; } else { return y; }
3
with ToBoolean: (Truthy — true) A (Falsy — false)

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:7y, y:5) {

if (ToBoolean(x)) { return x; } else { return y; }
3
with ToBoolean: (Truthy — true) A (Falsy — false)

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:7y, y:5) {

if (ToBoolean(x)) { return x; } else { return y; }
3
with ToBoolean: (Truthy — true) A (Falsy — false)

find o, such that

((Truthy — true) A (Falsy — false)) 0 < (y—>a) o
S

ToBoolean x — result

for some fresh type variable a representing the result of the application

30/36

Reconstruction of the Type of Parameters (example)

function LogicalOr (x:7y, y:5) {

if (ToBoolean(x)) { return x; } else { return y; }
3
with ToBoolean: (Truthy — true) A (Falsy — false)

find o, such that

((Truthy — true) A (Falsy — false)) 0 < (y—>a) o
S
ToBoolean x — result

for some fresh type variable a representing the result of the application =

{y~+"ATruthy ; a~a'vtrue} ; {v~~"AFalsy ; a~a"vVvfalse}
30/36

Reconstruction of the Type of Parameters (example)

function Logicalor (x: {7 ATruthy ; 4" AFalsy}, y:8) {
if (ToBoolean(x)) { return x; } else { return y; }

3

with ToBoolean: (Truthy — true) A (Falsy — false)

find o, such that

((Truthy — true) A (Falsy — false)) 0 < (y—>a) o
S
ToBoolean x — result

for some fresh type variable a representing the result of the application =

{y~+"ATruthy ; a~a'vtrue} ; {v~~"AFalsy ; a~a"vVvfalse}
30/36

Reconstruction of the Type of Parameters (example)

function Logicalor (x: {74’ ATruthy ; ~” AFalsy}, y:8) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean: (Truthy — true) A (Falsy — false)

Found two substitutions = we type the body twice (once for each hypothesis)

30/36

Reconstruction of the Type of Parameters (example)

function Logicalor (x: {74’ ATruthy ; ~” AFalsy}, y:8) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean: (Truthy — true) A (Falsy — false)

Found two substitutions = we type the body twice (once for each hypothesis)
(¥' A Truthy, §)

U

~" A Truthy

30/36

Reconstruction of the Type of Parameters (example)

function Logicalor (x: {74’ ATruthy ; ~” AFalsy}, y:8) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean: (Truthy — true) A (Falsy — false)

Found two substitutions = we type the body twice (once for each hypothesis)

(' A Truthy, §) (" AFalsy,d)
U U
~" A Truthy 0

30/36

Reconstruction of the Type of Parameters (example)

function Logicalor (x: {74’ ATruthy ; ~” AFalsy}, y:8) {
if (ToBoolean(x)) { return x; } else { return y; }

}

with ToBoolean: (Truthy — true) A (Falsy — false)

Found two substitutions = we type the body twice (once for each hypothesis)

(' A Truthy, §) (" AFalsy,d)
U U
~" A Truthy 0

((4' A Truthy,d) - 4" ATruthy) A ((7" AFalsy,d) - d)

30/36

= Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

31/36

https://www.cduce.org/dynlang/

= Conception of a sound and terminating (but incomplete) algorithm to reconstruct
annotation trees, using tallying and backtracking

= Fully implemented (OCaml, ~ 4600 loc): https://www.cduce.org/dynlang/

31/36

https://www.cduce.org/dynlang/

= Conception of a sound and terminating (but incomplete) algorithm to reconstruct

annotation trees, using tallying and backtracking
= Fully implemented (OCaml, ~ 4600 loc): https://www.cduce.org/dynlang/

= Several extensions: pattern matching, records, regular expression types (lists)

31/36

https://www.cduce.org/dynlang/

= Conception of a sound and terminating (but incomplete) algorithm to reconstruct

annotation trees, using tallying and backtracking
= Fully implemented (OCaml, ~ 4600 loc): https://www.cduce.org/dynlang/
= Several extensions: pattern matching, records, regular expression types (lists)

= Several optimizations: tree pruning, memoization, type simplification

31/36

https://www.cduce.org/dynlang/

Demo (https://www.cduce.org/dynlang/)

type Falsy = False | "" | 0 | Null
type Truthy = ~Falsy

let to_boolean x =
if x is Truthy then true else false

type> (Truthy — true) A (Falsy — false)

let logical_or (x,y) = if to_boolean x then x else y
type> ((a A Truthy,Any) - a A Truthy) A ((Falsy,() — ()

let id x = logical_or (x,x)

type> o -«

32/36

https://www.cduce.org/dynlang/

Demo (https://www.cduce.org/dynlang/)

let fixpoint = fun f ->
let delta = fun x -> £ (fun v -> x x v) in
delta delta

type> ((a—f) = (a=>B) A7) = (a—>p) Ay

let map_stub map f 1lst =
match 1st with

I [T -> [1
| Ce,1st) -> (f e, map f 1st)

let map = fixpoint map_stub
type> (Any > []~>[]) A ((a—) - [a+] > [B+])

33/36

https://www.cduce.org/dynlang/

Demo

(https://www.cduce.org/dynlang/)

let rec filter (f: (a — Any) A (B — Falsy)) (1: [(aVvB)*]) =
match 1 with

[[1 -> (1

| (e,1) -> if f e is Truthy then (e,

filter £ 1) else filter f 1
end

type> (o= Any) A (8 —Falsy) — [(avB)*] - [(a f)*]

let filtered_list = filter to_boolean [42;37;null;42;"";4]

type> [(4Vv 37 v 42)x]

let test = map ((+)1) filtered_list
type> [Intx]

34/36

https://www.cduce.org/dynlang/

Conclusion and Perspective

Conclusion and Perspective

34/36

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

35/36

https://www.cduce.org/dynlang/

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

My contributions:
= Declarative type system mixing union types, intersection types, and polymorphism
= Algorithmic type system, sound and complete, but that requires annotations

= Inference of these annotations using tallying and backtracking

= Fully implemented (OCaml, ~ 4600 loc): https://www.cduce.org/dynlang/

35/36

https://www.cduce.org/dynlang/

Conclusion

Goal: statically type dynamic languages without hindering their flexibility

My contributions:

= Declarative type system mixing union types, intersection types, and polymorphism
= Algorithmic type system, sound and complete, but that requires annotations
= Inference of these annotations using tallying and backtracking

= Fully implemented (OCaml, ~ 4600 loc): https://www.cduce.org/dynlang/
Publications:

= Science of Computer Programming: “Revisiting occurrence typing”
= POPL'22: “On Type-Cases, Union Elimination, and Occurrence Typing"
= POPL'24: “Polymorphic Type Inference for Dynamic Languages”

35/36

https://www.cduce.org/dynlang/

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)

36/36

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)

Which features are missing?

36/36

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)
Which features are missing?

= Nominal subtyping (abstract data types)

36/36

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)
Which features are missing?

= Nominal subtyping (abstract data types)
= Mutability of the state (references)

36/36

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)
Which features are missing?

= Nominal subtyping (abstract data types)
= Mutability of the state (references)

= Gradual typing, for a seamless integration and even more flexibility

36/36

Which features do we support?

= Overloaded functions, dynamic dispatch (type-cases)
= Generics (parametric polymorphism)

= Structural subtyping (pairs, records)
Which features are missing?

= Nominal subtyping (abstract data types)
= Mutability of the state (references)
= Gradual typing, for a seamless integration and even more flexibility

= Language-specific features
(example: pattern guards in Elixir [Castagna et al., 2023])

36/36

	Motivations
	Types & Core Language
	Typing JavaScript's ``[language=JavaScript]!||!'' (Logical Or)
	Set-Theoretic Types
	Core Language

	Declarative Type System
	Mixing Union, Intersection, and HM Polymorphism
	Typing Type-Cases
	Capturing Overloaded Behaviors

	Algorithmic Type System
	Declarative = Non-algorithmic
	Making the Type System Syntax-Directed
	Making the Rules Analytic

	Reconstruction of the Annotation Tree
	Reconstruction of Type Decompositions
	Reconstruction of the Type of Parameters
	Demo

	Conclusion and Perspective

