
UNIVERSITÉ PARIS CITÉ

ÉCOLE DOCTORALE 386
SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Polymorphic type inference
for dynamic languages

Reconstructing types for systems combining parametric,
ad hoc, and subtyping polymorphism

Thèse de doctorat par

Mickaël LAURENT

Spécialité : Informatique

Thèse dirigée par Giuseppe Castagna
et co-encadrée par Kim Nguyen

Préparée à l’IRIF (UMR 8243) et au LMF (UMR 9021)

Présentée et soutenue publiquement le 21 Juin 2024

Directeur : Giuseppe Castagna - Directeur de recherche (IRIF, Paris)
Co-encadrant : Kim Nguyen - Maître de conférences (LMF, Gif-sur-Yvette)

Président : Didier Remy - Directeur de recherche (INRIA Paris)
Rapporteurs : Alan Schmitt - Directeur de recherche (INRIA Rennes)

Jan Vitek - Professeur (Charles University, Prague)
Examinatrices : Amal Amhed - Professeure (Northeastern University, Boston)

Delia Kesner - Professeure (IRIF, Paris)

i

Acknowledgements - Remerciements

First of all, I would like to thank my reviewers, Alan Schmitt and Jan Vitek, for
their careful reading of my manuscript and their detailed insights and comments. I
am very grateful for the time you spent reviewing my thesis. I would also like to
thank my examiners, Amal Amhed, Delia Kesner, and Didier Remy, for accepting
to be part of the committee. Thank you all for your attention to my work.

J’aimerais maintenant remercier mes deux encadrants, Giuseppe et Kim. Merci
du fond du cœur pour ces quatre années formidables. Merci d’avoir été disponible à
tout moment, merci pour votre bienveillance et vos conseils. Pour avoir écouté mes
idées et mes difficultés (pourtant pas toujours exprimées très clairement), pour les
réflexions et les discussions que nous avons eues ensemble, vous avez fait de ces qua-
tre années une expérience épanouissante autant scientifiquement qu’humainement.
Merci pour ces moments précieux, à Philadelphie, à Londres, et ici même, à l’IRIF
et au LMF. Merci également à Alan Schmitt et Didier Remy pour avoir accepté
d’être membre de mon CSI. Je suis honoré de l’attention que vous avez portée à
mon travail et du temps que vous y avez consacré.

Il me tient à cœur de remercier également mes professeurs qui, en plus de com-
pétences académiques, m’ont appris à apprécier les mathématiques, l’informatique
théorique et la recherche. Vos enseignements m’ont motivé à continuer dans cette
voie, et à mon tour, à faire de la recherche et de l’enseignement. Tout partic-
ulièrement, je pense à Jérôme Mollaret, qui dès le lycée m’a transmis sa passion du
raisonnement, à travers son énergie et sa rigueur enthousiaste. Je crois, en tout cas
j’espère, qu’à mon tour je transmets un peu de cet enthousiasme quand j’enseigne
à mes étudiants des notions qui me tiennent à cœur. Merci à mes professeurs de
prépa et à ceux de l’ENS Paris-Saclay. Encore une fois, merci à Giuseppe. Par tes
introductions didactiques et motivées, tu m’as fait apprécier l’étude des langages de
programmation et des systèmes de types.

Un immense merci à mes collègues et amis. À Victor, pour ta gentillesse et ton
aide pendant mon stage de M2 et ma première année de thèse. À tous mes amis
du MPRI, avec qui j’ai beaucoup travaillé, débattu et rigolé. Merci Kostia pour
ces super souvenirs : les Escape Game, Nene Quest, les parties de Smash... À mes
collègues de bureau, pour votre très agréable compagnie. Aliaume, ces discussions
autour de tes nombreuses idées de tooling me manquent déjà ! Il faut bien quatre
années pour faire une thèse tout en plaisantant avec Alexandra et toi : merci pour
ce sabotage de productivité ! Florian, Emily, Emmanuel, un grand merci à vous
pour votre soutien, pour m’avoir remplacé sans hésiter, et pour ces moments où nous
maudissions ensemble les étudiants. Enfin, merci à Philippe pour ta compagnie et tes
relectures, et bonne chance dans ta noble quête de side-effects : puisse l’inquisition
rétablir l’ordre dans ton λ-calcul profané par les impuretés. Et à tous ceux que je
n’ai pas cité, avec qui j’ai partagé tant de repas, de discussions et de rires. C’était
un plaisir de venir au labo pour discuter avec vous tous !

ii

À mes amis qui m’ont accompagné pendant ce périple. À Mathis et Mar-
gaux, pour tout ce que nous avons partagé : les Escape Game, le développement
d’applications (et autres bidouilles), et tous ces précieux moments passés ensemble.
À Stanislas et Augustin, pour toutes nos sessions Discord passées à échanger et à
jouer, à farmer le Dracaille, à perdre sur Fall Guys, ou à faire des donjons sur New
World. Et enfin, à mon compère Sylvain et à Rita, pour ces longues soirées que nous
passons ensemble à partager nos passions. À ces victoires sur Ravenswatch et ces
échecs sur Deep Rock Galactic, à notre temple Minecraft, à nos nombreux projets
informatiques, à ces nombreuses dégustations de Shawarma, et à tous ces moments
inoubliables.

À mon grand frère Jonathan, je partageais déjà mes premiers projets de pro-
grammation avec toi il y a 15 ans, et encore aujourd’hui je partage ma passion de
l’informatique, de la recherche et des raisonnements. C’est en m’inspirant de toi et
grâce à tes conseils que je présente aujourd’hui ma thèse de doctorat. Merci !

À Papa, à Maman, vous m’avez toujours soutenu dans mes études et êtes toujours
présents pour partager des moments avec moi, pour me cuisiner des plats que j’aime
et m’aider quand j’en ai besoin. Merci de m’avoir toujours fait confiance !

Et enfin, à toute ma famille, à Adeline, Éden, Mélodie, à mes cousins, mes oncles,
mes tantes et mes grands-parents. À vous tous qui m’apportez tant de réconfort et
de bons moments, merci !

Polymorphic type inference for dynamic languages:
reconstructing types for systems combining parametric,

ad hoc, and subtyping polymorphism

Abstract: In this thesis, we present a type system based on set-theoretic types
that aims to type dynamic languages, such as JavaScript, Python or Elixir. The use
of set-theoretic types is motivated by their expressivity: they feature a subtyping
relation that supports unrestricted intersections, unions, and negations. This allows
capturing many idiomatic behaviors of dynamic languages: intersection types are
used to capture overloaded behaviors, and union and negation types open the way
to a precise typing of type-cases (dynamic tests of type) using advanced techniques
of occurrence typing (or type narrowing). Set-theoretic types can also be extended
with type variables in order to implement parametric polymorphism, which allows
designing a modular type system where the definitions are typed sequentially. How-
ever, set-theoretic types are usually used in a language where functions need to be
explicitly annotated with their type by the programmer. We get rid of this con-
straint, working on a λ-calculus with no type annotation. Instead, an inference
algorithm is charged of reconstructing the type of functions.

In the first part of this manuscript, we go through the foundations of set-theoretic
types and introduce our language, a call-by-value λ-calculus with pairs and type-
cases. We discuss and illustrate the challenges of typing such a language.

The second part contains the core formalization (and proofs) of our type system.
The first type system we define is purely declarative. It combines several rules in-
spired from natural deduction, in particular: the union-elimination, the intersection-
introduction, the instantiation, and the generalization. We prove the type safety of
this system: a typeable program always reduces to a value of the same type or di-
verges. We then define an algorithmic (deterministic) type system that is equivalent
to the declarative one, but that takes as additional input an annotation tree that
specifies, among others, the types of the parameters of λ-abstractions. Finally, we
define a reconstruction algorithm that aims to reconstruct annotation trees.

In the last part of this manuscript, we focus on some practical aspects. We
discuss some extensions and optimizations of the algorithmic type system and
reconstruction algorithm, and we present a prototype implementation. We evaluate
this prototype on several examples, highlighting its strengths and weaknesses, and
comparing it to other related approaches.

Keywords: static typing, dynamic language, type inference, set-theoretic
types, semantic subtyping, occurrence typing, type narrowing, polymorphism,
intersection types, union types

Inférence de types polymorphes pour des langages dynamiques:
reconstruction de types pour des systèmes combinant

polymorphisme paramétrique, surcharge et sous-typage

Résumé : Cette thèse porte sur la conception d’un système de types basé sur les
types ensemblistes et visant à typer les langages dynamiques, tels que JavaScript,
Python ou Elixir. L’utilisation des types ensemblistes est motivée par leur expressiv-
ité : ils sont dotés d’une relation de sous-typage qui prend en charge intersections,
unions et négations. Cela permet de capturer de nombreux comportements idioma-
tiques des langages dynamiques : les types intersection sont utilisés pour capturer les
comportements surchargés, et les types union et négation ouvrent la voie vers un ty-
page précis des type-cases (tests de type dynamiques) via l’utilisation de techniques
de rétrécissement de types. Les types ensemblistes peuvent également être étendus
avec des variables de type afin d’implémenter du polymorphisme paramétrique, per-
mettant la conception d’un système de types modulaire dans lequel les définitions
sont typées séquentiellement. Cependant, les types ensemblistes sont généralement
utilisés dans un langage où les fonctions doivent être explicitement annotées par leur
type. Nous nous débarrassons de cette contrainte en travaillant sur un λ-calcul sans
annotation de type. À la place, un algorithme d’inférence est chargé de reconstruire
le type des fonctions.

Dans la première partie de ce manuscrit, nous passons en revue les fondements
des types ensemblistes et présentons notre langage, un λ-calcul par appel par valeur
avec paires et type-cases, et discutons des défis posés par le typage d’un tel langage.

La deuxième partie contient la formalisation de base (et les preuves) du système
de types. Le premier système de types que nous définissons est purement déclaratif.
Il combine plusieurs règles inspirées de la déduction naturelle, en particulier :
l’élimination de l’union, l’introduction de l’intersection, l’instanciation et la général-
isation. Nous prouvons la sûreté du typage de ce système : un programme typeable
se réduit toujours à une valeur de même type ou diverge. Nous définissons ensuite
un système de types algorithmique (déterministe) équivalent au système déclaratif,
mais qui prend comme entrée supplémentaire un arbre d’annotations qui spécifie,
entre autres, les types des paramètres des λ-abstractions. Enfin, nous définissons
un algorithme de reconstruction qui vise à reconstruire les arbres d’annotations.

Dans la dernière partie de ce manuscrit, nous nous concentrons sur certains as-
pects pratiques. Nous discutons de certaines extensions et optimizations du système
de types algorithmique et de l’algorithme de reconstruction, et nous présentons un
prototype d’implémentation. Nous évaluons ce prototype sur plusieurs exemples,
en soulignant ses forces et ses faiblesses, et en le comparant à d’autres approches.

Mots clés : typage statique, langage dynamique, inférence de type, types
ensemblistes, sous-typage sémantique, typage d’occurrence, rétrecissement de type,
polymorphisme, types intersection, types union

v

Résumé long

Cette thèse porte sur la conception d’un système de types basé sur les types en-
semblistes et visant à typer les langages dynamiques, tels que JavaScript, Python
ou Elixir. L’utilisation des types ensemblistes est motivée par leur expressivité : ils
sont dotés d’une relation de sous-typage qui prend en charge intersections, unions
et négations. Cela permet de capturer de nombreux comportements idiomatiques
des langages dynamiques : les types intersection sont utilisés pour capturer les com-
portements surchargés, et les types union et négation ouvrent la voie vers un typage
précis des type-cases (tests de type dynamiques) via l’utilisation de techniques de
rétrécissement de types. Les types ensemblistes peuvent également être étendus
avec des variables de type afin d’implémenter du polymorphisme paramétrique, per-
mettant la conception d’un système de types modulaire dans lequel les définitions
sont typées séquentiellement. Cependant, les types ensemblistes sont généralement
utilisés dans un langage où les fonctions doivent être explicitement annotées par leur
type. Nous nous débarrassons de cette contrainte en travaillant sur un λ-calcul sans
annotation de type. À la place, un algorithme d’inférence est chargé de reconstruire
le type des fonctions.

Types ensemblistes

Les types ensemblistes, introduits et formalisés par Frisch (2004), ajoutent aux
constructeurs de types habituels (flèche Ñ et produit ˆ) la possibilité d’exprimer
l’union _ de deux types, l’intersection ^ de deux types, et la négation ␣ d’un type.

Le premier défi est de définir une relation de sous-typage sur ces types. Pour
ce faire, à chaque type t est associée une interprétation JtK comme un ensemble
de valeurs : par exemple, l’interprétation de Int ˆ Bool est l’ensemble de toutes
les paires dont le premier composant est un entier et le second un booléen. Notez
toutefois que cette interprétation est plus difficile à définir pour les types de flèches
et qu’elle nécessite une attention particulière. En utilisant cette interprétation, le
sous-typage est naturellement défini comme suit : un type t1 est un sous-type d’un
type t2 si et seulement si l’ensemble Jt1K est un sous-ensemble de Jt2K. Cette relation
de sous-typage est souvent appelée sous-typage sémantique.

Cette définition formelle du sous-typage est très bien, mais elle implique des
ensembles infinis qui ne peuvent pas être facilement manipulés dans un algorithme.
Le deuxième défi consiste donc à trouver un moyen calculable de déterminer si un
type est sous-type d’un autre. Au lieu de considérer les interprétations des types,
l’algorithme de sous-typage travaille directement sur l’arbre syntaxique des types.
Une représentation spéciale est définie pour les types : la Forme Normale Disjonctive
(DNF). Chaque type peut être représenté par une Disjunctive Normal Form (DNF),
et cette forme simplifie la décision du sous-typage et, plus généralement, la mise en
place d’opérateurs sur les types.

La DNF peut également être utilisée pour la résolution de contraintes de sous-
typage impliquant des variables de type. Étant donné un ensemble de contraintes de

vi

sous-typage ts1 9ď t1 ; ... ; sn 9ď tnu, nous voulons trouver toutes les substitutions de
type ϕ telles que @i P 1 . . n. siϕ ď tiϕ. Ce problème, appelé tallying, est décidable,
et il s’agit d’une opération clé utilisée par notre inférence de type.

Langage et problématique

Notre langage est un λ-calcul en appel par valeur, avec des constantes et des paires,
ainsi qu’une construction (ePτ) ? e1 : e2 appelée type-case qui permet de tester le
type de l’expression e à l’exécution et de brancher dynamiquement sur la branche e1
ou e2 selon le résultat du test. Ici, τ est un type qui ne contient aucun type flèche à
l’exception de EmptyÑ Any (le supertype de toutes les fonctions). En pratique, cela
signifie que nous pouvons vérifier si une valeur est une λ-abstraction ou non, mais
nous ne pouvons pas vérifier, par exemple, si cette λ-abstraction accepte des entiers
en entrée ou non. Cette restriction est nécessaire pour donner une sémantique cor-
recte aux type-cases : comme nos λ-abstractions ne sont pas explicitement annotées
avec leur type, il n’est pas possible, au moment de l’exécution, de déterminer le type
d’une λ-abstraction.

Cette construction de type-case est très simple, et pourtant elle est difficile à
typer. En effet, le typage d’une expression (ePτ) ? e1 : e2 peut nécessiter l’utilisation
de typage d’occurrence (ou rétrécissement de type) : il est possible que la première
branche e1 (respectivement, la seconde branche e2) ne puisse être typée que dans un
environnement de type raffiné qui tient compte du fait que l’expression e se réduit
à une valeur de type τ (respectivement, de type ␣τ). En outre, les type-cases per-
mettent d’écrire des fonctions avec un comportement surchargé. Ce comportement
surchargé doit être capturé par notre système de types, ce qui nous oblige à dériver
des types intersection pour les fonctions.

Enfin, notre langage et notre système de types doivent être modulaires. Lors
du typage d’une base de code conséquente, constituée de plusieurs définitions suc-
cessives, le type déduit pour une définition ne doit pas dépendre des définitions
ultérieures. Par exemple, une bibliothèque doit pouvoir être typée indépendam-
ment des projets qui l’utilisent. Pour capturer cette notion de modularité, nous
introduisons la notion de programmes, consistant en une séquence de définitions qui
doivent être typées l’une après l’autre.

Système de types déclaratif

D’un point de vue conceptuel, le système de types déclaratif est assez simple : il
fusionne trois des systèmes de types les plus expressifs étudiés dans la littérature,
à savoir les types polymorphes de Hindley-Milner (Hindley, 1969; Milner, 1978),
les types intersection (Coppo et al., 1981), et les types union (MacQueen et al.,
1986; Barbanera et al., 1995). Nous y parvenons simplement en rassemblant de
manière contrôlée les règles de déduction caractéristiques de chacun de ces systèmes,
détaillées ci-dessous, et en prouvant que le système résultant est sûre.

Les types intersection peuvent être utilisés pour capturer le comportement des

vii

fonctions surchargées : par exemple, l’opérateur surchargé + qui peut effectuer
l’addition d’entiers et la concaténation de chaînes de caractères peut être typé
pInt Ñ Int Ñ Intq ^ pString Ñ String Ñ Stringq. Pour dériver des types
intersection pour les fonctions, nous ajoutons à notre système de types la règle
d’introduction de l’intersection : si nous pouvons dériver le type t1 et le type t2
pour une expression e, alors nous pouvons dériver pour cette dernière le type t1^ t2.

Les types union sont utilisés pour implémenter le typage d’occurrence. La puis-
sance des types union est exploitée par la règle d’élimination de l’union : étant
donné une expression e que nous voulons typer et une sous-expression e1 de e dont
le type peut être décomposé en une union t1 _ t2, nous pouvons choisir de diviser
la dérivation de typage en deux branches indépendantes, l’une qui suppose que les
occurrences de cette sous-expression sont de type t1, et l’autre qui suppose qu’elles
sont de type t2. Cette mécanique, associée à des des règles simples pour les type-
cases qui permettent de sauter une branche lorsqu’elle est inaccessible1, permet de
typer une branche d’un type-case en considérant uniquement les environnements
de type pour lesquels elle est accessible. Ainsi, ce mécanisme capture pleinement
l’essence du typage d’occurrences.

Enfin, le polymorphisme paramétrique de Hindley-Milner est nécessaire pour
rendre notre système de types modulaire. Bien que les types intersection puissent
être utilisés pour capturer le comportement des fonctions surchargées, ils ne peuvent
pas capturer complètement le comportement des fonctions génériques, car cela né-
cessiterait un nombre infini d’intersections : par exemple, la fonction identité peut
être approximée par un type intersection tel que pInt Ñ Intq ^ p␣Int Ñ ␣Intq,
mais ce type ne convient que si l’on sait que cette fonction ne sera appliquée qu’à
des arguments de type Int et ␣Int. Dans un langage modulaire, cependant, nous
ne savons pas à l’avance dans quels contextes cette fonction sera utilisée. Le poly-
morphisme paramétrique apporte une solution à ce problème, en nous permettant
de typer la fonction identité α Ñ α et d’instancier librement la variable de type α
plus tard, chaque fois que cette fonction est utilisée.

Le système de types que nous obtenons est puissant, mais il n’est pas algorith-
mique : plusieurs dérivations de typage peuvent exister pour un même jugement, et
elles peuvent avoir des formes très différentes, en grande partie à cause de la règle
d’élimination de l’union. Pour prouver la sûreté de ce système de types, nous re-
streignons la forme des jugements de typage en définissant une notion de dérivations
canoniques, et nous décrivons un processus de normalisation permettant de trans-
former n’importe quelle dérivation en dérivation canonique. En particulier, nous
montrons que la règle d’élimination de l’union n’a besoin d’être appliquée qu’une
seule fois sur chaque sous-expression, et nous limitons les endroits de la dérivation où
elle peut être appliquée. Cette notion de dérivation canonique constitue un premier
pas vers un système de types algorithmique.

1Trois règles de typage au total : une qui couvre le cas où l’expression testée a le type vide
Empty et donc les deux branches sont inaccessibles, et les deux autres qui couvrent les cas où l’une
des deux branches est inaccessible

viii

Système de types algorithmique

La définition d’un système de types algorithmique, correct et complet par rapport au
système déclaratif, n’est pas une tâche facile. Pour être algorithmique, un système
de types doit satisfaire deux propriétés : piq il doit être dirigé par la syntaxe, et piiq
toutes ses règles doivent être analytiques2.

Un système de types est dirigé par la syntaxe lorsque la syntaxe de l’expression
que nous typons identifie de manière unique la règle à appliquer. Ce n’est pas le
cas du système de types déclaratif, notamment à cause de la règle d’élimination de
l’union : cette règle peut être utilisée sur n’importe quelle expression e pour décom-
poser le type de n’importe quelle sous-expression e1 de e. Afin de rendre le système
de types dirigé par la syntaxe, nous restreignons l’utilisation de la règle d’élimination
de l’union en se basant sur la forme des dérivations canoniques. Sans entrer dans les
détails, lors de la saisie d’une expression e, nous appliquons la règle d’élimination
de l’union une seule fois sur chaque sous-expression e1 de e, et ce dès que toutes
les variables libres de e1 sont dans l’environnement de typage. Pour implémenter ce
comportement dans le système de types algorithmique, nous transformons d’abord
l’expression e en une forme canonique κ, qui consiste en une séquence de bindings
associant des variables à des expressions dans lesquelles chaque sous-expression pro-
pre est une variable. Par exemple, une forme canonique pour l’expression pf x, f xq
est bind y = f x in bind z = py, yq in z . L’avantage de cette forme est que chaque sous-
expression de e est maintenant liée à une variable : le système de types algorithmique
peut donc simplement appliquer la règle d’élimination de l’union une fois sur chaque
définition bind. Cependant, afin de préserver la typabilité, les formes canoniques
doivent satisfaire certaines propriétés : en particulier, deux sous-expressions syn-
taxiquement équivalentes doivent être liées à la même variable (cette contrainte
est nécessaire pour préserver la corrélation entre les différentes occurrences d’une
même sous-expression). Une forme canonique qui satisfait cette propriété—et deux
autres—est appelée forme MSC (Maximal Sharing Canonical). Nous prouvons que
toute expression e possède une forme MSC unique, notée MSCpeq, et nous four-
nissons un moyen de la calculer.

Pour avoir un système de types algorithmique, nous avons également besoin que
toutes les règles soient analytiques. Une fois de plus, la règle d’élimination de l’union
est problématique : la décomposition de type t1 _ ... _ tn ne peut être déduite de
la conclusion de la règle. Une autre règle non analytique est la règle de typage
des λ-abstractions, car elle doit deviner un type pour le paramètre. Pour rendre
ces règles analytiques, les jugements dérivés par le système de types algorithmique
sont modifiés : en plus d’un environnement de type Γ et d’une forme canonique
κ, ils prennent comme entrée supplémentaire un arbre d’annotations qui spécifie
ces éléments. Ce triplet formé d’un environnement de type, d’une forme canonique
et d’un arbre d’annotations, encode de manière unique une dérivation canonique

2Une règle est analytique (par opposition à synthétique) lorsque les entrées de la conclusion du
jugement (c’est-à-dire l’environnement de type et l’expression) sont suffisantes pour déterminer les
entrées des prémisses du jugement (cf. Martin-Löf (1994); Types (2019)).

ix

du système de types déclaratif. Ainsi, nous avons réduit le problème consistant à
trouver une dérivation pour une expression e avec le système de types déclaratif au
problème consistant à rechercher un arbre d’annotations qui rend MSCpeq typable
avec le système de types algorithmique.

Reconstruction de l’arbre d’annotations

Le problème suivant que nous abordons est la reconstruction (inférence) de l’arbre
d’annotations utilisé par le système de types algorithmique. À cette fin, nous définis-
sons un algorithme, décrit par un système de règles de déduction, qui raffine incré-
mentalement (en utilisant du backtracking) un arbre d’annotations, initialement
composé d’un seul noeud “infer”. Il combine deux mécanismes : piq un qui infère
le(s) domaine(s) des λ-abstractions et qui s’inspire de l’algorithme W de Damas and
Milner (1982), et piiq l’autre qui déduit les décompositions de type à utiliser par les
applications de la règle d’élimination de l’union sur chaque définition bind.

Le premier mécanisme commence par typer chaque paramètre d’une λ-
abstraction avec une nouvelle variable de type, utilisée comme marqueur symbolique
qui est ensuite remplacé au fur et à mesure que de nouvelles contraintes sont décou-
vertes. La principale différence avec W est que, alors que W utilise l’unification pour
résoudre des contraintes syntaxiques, nous devons résoudre des contraintes de sous-
typage sémantique : pour cela, nous utilisons l’algorithme de tallying. Les solutions
à une instance de tallying sont caractérisées par un ensemble fini de substitutions,
obligeant notre algorithme de reconstruction à se ramifier afin de considérer chaque
substitution séparément.

Le second mécanisme, pour déduire les décompositions de type à utiliser par la
règle d’élimination de l’union, est déclenché par les type-cases. Chaque fois qu’un
type-case (xPτ) ? y : z est rencontré, la décomposition de type associée à x est raffinée
: le type de x est divisé en τ et ␣τ . Plus précisément, si l’environnement de type
courant est Γ, l’algorithme de reconstruction considère deux branches : l’une dans
laquelle x est de type Γpxq ^ τ , et une autre dans laquelle x est de type Γpxq ^ ␣τ .
Cette décomposition est ensuite rétropropagée sur les autres variables apparaissant
dans la définition de x.

Aspects pratiques et implémentation

L’algorithme que nous utilisons pour reconstruire les arbres d’annotations repose
fortement sur du backtracking et des ramifications. Par conséquent, plusieurs opti-
misations et heuristiques sont nécessaires afin de réduire l’explosion combinatoire des
cas à explorer, et ainsi obtenir des performances raisonnables. En particulier, nous
présentons un système qui élimine les branches redondantes de l’arbre d’annotations,
des heuristiques pour simplifier les types et les substitutions, ainsi qu’un système de
cache basé sur de la mémoïsation.

Ces optimisations sont mises en œuvre dans une implémentation prototype du
système de types algorithmique et de l’algorithme de reconstruction. Ce proto-

x

type est écrit en OCaml, et il comporte plusieurs extensions: la prise en charge des
enregistrements, des annotations de type utilisateur, des let-bindings et du pattern
matching. Nous évaluons ce prototype sur plusieurs exemples et étudions l’impact
des différentes optimisations sur les performances.

Cela nous permet de mettre en évidence les forces et les faiblesses de notre
approche. Notre système de types est plus expressif que les approches concur-
rentes telles que Typed Racket et TypeScript, et il propose une inférence de type.
Cependant, l’algorithme de reconstruction utilisé pour l’inférence de type n’est pas
complet et souffre de performances inégales. Ces problèmes peuvent être atténués
par l’introduction d’annotations de type explicites, écrites par le programmeur :
non seulement ces annotations peuvent être utilisées pour guider la reconstruction
et ainsi repousser les limites découlant de son incomplétude, mais elles améliorent
aussi considérablement les performances, car les types annotés par l’utilisateur n’ont
pas besoin d’être raffinés ultérieurement à mesure que de nouvelles contraintes sont
découvertes, évitant ainsi d’avoir recours à du backtracking.

De futurs travaux sont encore nécessaires si nous voulons intégrer ce système
de types à un langage existant. Outre l’amélioration des performances, certaines
extensions doivent encore être étudiées et implémentées, telles que le typage graduel
(afin que le système de types puisse être déployé progressivement sans avoir à typer
toute la base de code déjà existante), la génération de messages d’erreur simples et
pertinents, et la prise en charge des effets de bord (si le langage cible n’est pas pur).

Contents

I Context and Motivations 1

1 Introduction 3
1.1 Dynamic languages . 3
1.2 Motivations . 6
1.3 Contributions . 8
1.4 Timeline and scientific production 9
1.5 Outline . 11

2 Background 17
2.1 Set-theoretic types . 17
2.2 Type substitutions . 18
2.3 Type interpretation . 19
2.4 Semantic subtyping . 22
2.5 Disjunctive Normal Form and type operators 23
2.6 The tallying problem . 24

3 Core Language 27
3.1 Syntax . 27
3.2 Semantics . 29
3.3 Challenges . 31

3.3.1 Occurrence typing . 31
3.3.2 Overloaded functions . 32
3.3.3 Modularity . 32
3.3.4 Type inference . 33

II Core Formalization 35

4 Declarative Type System 37
4.1 Formalization . 37

4.1.1 Polymorphic and monomorphic types 37
4.1.2 Type system . 39

4.2 Canonical typing derivations . 43
4.2.1 Alternative form of the declarative type system 44
4.2.2 Normalization of typing derivations 48

4.3 Type safety . 63
4.3.1 The parallel semantics . 63
4.3.2 Elimination of instantiations and generalizations 65
4.3.3 Deriving negations of arrows 69
4.3.4 Subject reduction . 73

xii Contents

4.3.5 Progress . 80
4.3.6 Type safety for the source semantics 83

5 Algorithmic Type System 89
5.1 Maximal Sharing Canonical forms . 90

5.1.1 Canonical forms . 90
5.1.2 Maximal Sharing Canonical forms 94

5.2 Annotations and algorithmic type system 101
5.3 Equivalence with the declarative type system 107

5.3.1 Soundness . 107
5.3.2 Completeness . 109

6 Reconstruction Algorithm 117
6.1 The tallying algorithm . 120
6.2 Main reconstruction algorithm . 121
6.3 Substitution inference system . 134
6.4 Backpropagation of splits . 137
6.5 Discussion about the reconstruction algorithm 140

6.5.1 Termination . 140
6.5.2 Incompleteness . 143

III Towards a Practical Language 145

7 Extensions 147
7.1 Records . 147
7.2 User type annotations . 153
7.3 Let-bindings . 155
7.4 Extended type-cases . 159
7.5 Pattern matching . 163

8 Practical Aspects 167
8.1 Intersection nodes pruning . 168

8.1.1 An explosion of the number of branches 168
8.1.2 A heuristic for trimming redundant branches 171

8.2 Type decompositions pruning . 176
8.3 Simplification of types . 178

8.3.1 Simplification of function types 179
8.3.2 Simplification of tallying solutions 180

8.4 Memoization . 183

9 Prototype Implementation 185
9.1 Presentation of the prototype . 185

9.1.1 Language and features . 185
9.1.2 Architecture of the implementation 194

Contents xiii

9.2 Results and performance . 195
9.2.1 Type inference . 195
9.2.2 Performance . 201

10 Discussion and Conclusion 207
10.1 Limitations . 207
10.2 Towards completeness . 209
10.3 Related work . 213

10.3.1 Formalizations using set-theoretic types 213
10.3.2 Other formalizations . 214
10.3.3 Dynamic languages . 217

10.4 Conclusion and future work . 219

Bibliography 223

Symbols and notations

Background

t, s P T Set-theoretic types . 17

α, β P V Type variables . 17

ϕ (resp. Φ) Substitution (resp. set of substitutions) from V to T 18

dompϕq Domain of the substitution ϕ . 19

ϕ
ˇ

ˇ

V
Restriction of ϕ to the domain V . 19

t#V Disjointness of varsptq with V . 19

ϕ#V Disjointness of dompϕq with V . 19

varspϕq Type variables introduced by ϕ . 19

JtK Interpretation of the type t as a set of values . 21

varsptq Meaningful type variables in type t . 22

domptq Domain of the function type t . 23

˝,π1,π2 Type operators . 23

ϕ ,∆ C The substitution ϕ is a solution to the tallying problem pC,∆q . . . 25

Language

τ Test type . 27

” Syntactic equality . 29

”α Syntactic equivalence modulo α-renaming . 29

Ďα Subterm order modulo α-renaming. 29

⇝,⇝Pr Reduction step for expressions, programs . 30

fvpeq Free variables in e . 29

ete1{xu Capture-avoiding substitution of e1 for x in e . 29

Declarative type system

α,β P VM Monomorphic type variables (VM Y VP “ V) . 38

α, β P VP Polymorphic type variables (VM Y VP “ V) . 38

xvi Symbols and notations

u,v P TM Monomorphic set-theoretic types. 38

σ (resp. Σ) Substitution (resp. set of substitutions) from VP to T 39

ψ (resp. Ψ) Substitution (resp. set of substitutions) from VM to TM 39

ρ Renaming (i.e., injective substitution) from VP to VP 39

dompΓq Domain of the type environment Γ . 40

varspΓq Type variables in the type environment Γ . 40

ϕ#Γ Disjointness of dompϕq with varspΓq . 40

$,$Pr Declarative type system for expressions, programs 40, 42

$: ,$: Pr Alternative type system for expressions, programs 46, 67

$: N ,$: N ,Pr Type system with arrow negations for expressions, programs . 71, 73

Partptq Set of partitions of the type t . 44

x, y P Varsλ Lambda variable . 45

x, y P VarsB Binding variable . 45

x,y P Vars Lambda or binding variable . 45

Ÿ “Is better type” relation . 47

⇝P ,⇝P,Pr Parallel reduction step for expressions, programs 65

Algorithmic type system

κ, a, η Canonical form, atom, canonical form/atom. 90

rκs Unwinding of the canonical form κ . 92

JeK Transformation of expression e into a canonical form 93

99K Canonical to MSC reduction step . 98

k,a,h Form, atom, form/atom annotation . 101

$A Algorithmic type system. 103

Reconstruction

tallyp.q Tallying solutions for polymorphic type variables 120

tally_inferp.q Tallying solutions for monomorphic type variables 121

$R,$
˚
R Main reconstruction system. 121

Symbols and notations xvii

K,A,H Form, atom, form/atom intermediate annotation 122

$S Substitution inference system . 134

$B Split backpropagation system . 137

Extensions

ξ Intermediate expression. 156

LeM Transformation of source expr. e into an intermediate expr. 157

Practical aspects

ŸT Approximation of “is better type” relation . 173

ŹT “Has better coverage” relation. 175

Acronyms

AST Abstract Syntax Tree . 194

DNF Disjunctive Normal Form . 23

MSC Maximal Sharing Canonical . 95

Part I

Context and Motivations

Chapter 1

Introduction

Contents
1.1 Dynamic languages . 3

1.2 Motivations . 6

1.3 Contributions . 8

1.4 Timeline and scientific production 9

1.5 Outline . 11

This manuscript aims to design a type system for dynamic languages such as
JavaScript or Python, using an approach based on set-theoretic types (Frisch et al.,
2008). Initially, this thesis was focused on the typing of dynamic type-cases (in
JavaScript, expressions of the form: if (typeof(expr) === "type") { ... } else { ... }).
In particular, it aimed at integrating a typing technique usually referred as occur-
rence typing or type narrowing into a type system based on set-theoretic types. It
has naturally grown into the study of a more general problem: the inference of types
for polymorphic and overloaded functions.

1.1 Dynamic languages

Historically, programming languages allow programs to be executed through a phase
of compilation that transforms the source code of the program into machine code,
which can then be executed natively. The operations provided by a programming
language can operate on different type and size of data (Boolean value, unsigned
integer, signed integer, array, function, etc.), and thus a phase of type-checking
may be added before compilation in order to verify that operations are applied to
expressions of a compatible type, or to determine which operation to perform (for
instance, at the level of machine code, dividing two unsigned integers is a different
operation than dividing two signed integers). The native machine code produced
this way is very efficient, as all operations have been statically resolved: a compiled
program does not have to check at run-time whether the division must be performed
on unsigned integers or on signed integers. However, another kind of programming
language was developed, which we call dynamic programming languages (as opposed
to static programming languages).

Dynamic programming languages execute at run-time many common program-
ming behaviors that static programming languages perform during compilation.

4 Chapter 1. Introduction

Usually, dynamic languages do not compile programs to native machine code, but
their source code (or a transformed version of it) is executed by an interpreter. This
usually results in poorer performance because an intermediary is required to execute
the code, but allows the expression of behaviors that would be difficult to emulate in
a static programming language. Some common characteristics of dynamic languages
are: piq they offer limited static guarantees, piiq the type of data manipulated can be
tested at run-time, so functions can have overloaded behaviors that are resolved at
run-time (dynamic dispatch), and piiiq the code is part of the state and is mutable
(functions can be modified or added at run-time, which is sometimes referred as
“reflection”). This characterization includes languages such as JavaScript, Python,
Lua, PHP, Racket, R, or the more recent language Julia. Some other languages, such
as Erlang and Elixir, can also be considered to be dynamic even though they do not
satisfy the point piiiq: the functional fragment of these two languages is pure (the
state is immutable), thus there cannot be side effects.

As an illustration of the flexibility and concision that is made possible by dy-
namic languages, consider the following Python code:

1 def get_population(data , city):

2 df = pandas.read_csv(StringIO(data))

3 return df[df[’city’] == city].loc[0,’population ’]

This function get_population takes two parameters, the first one is a string con-
taining some CSV data, and the second one a string containing the name of a city.
The CSV data must contain at least two columns, “city” and “population”. Calling
get_population(data, city) returns the population associated to city according
to the CSV string data. Line 2 uses the Pandas library to parse the CSV data
into a data-frame (a data structure for representing two-dimensional heterogeneous
tables). Then, Line 3 filters the table to only keep rows for which the field “city” is
equal to the variable city, and it returns the “population” field of the first row of
the result.

The expression df[df[’city’] == city] is interesting: it filters the data-frame
df according to the condition written inside the square brackets. Usually, the d[k]

notation is used to extract the k-th element of the list d, or to extract the value
associated to the key k in the dictionary d. However, here, the [] operator is
overloaded by the Pandas library (and so is the == operator):

• The [] operator is overloaded a first time so that it can apply to a data-frame
and a string. The result of df[’city’] is a series (basically, a one-dimensional
indexed array) that represents the “city” column of df (each element being
indexed by the corresponding row number).

• The == operator is overloaded so that, when its first argument s is a series and
its second argument v is a string, it returns a series of Boolean values which
can be seen as a characteristic function representing, among the indexes of s,
those that are associated to a value that is equal to v.

1.1. Dynamic languages 5

• Lastly, the [] operator is overloaded again so that, when applied to a data-
frame d and a series s, it filters the rows of d according to the characteristic
function represented by s.

Together, these overloaded definitions make it possible to filter a data-frame by
writing df[df[’city’] == city] without requiring any modification to the Python
language itself.

Another thing to note about the get_population function is the absence of any
type annotation. Indeed, variables do not have static types in Python1: types only
exist at run-time, and are used for the dynamic dispatch.

This example illustrates how overloading with dynamic dispatch can make dy-
namic languages very flexible and concise, and thus, convenient for prototyping.
However, the lack of static types makes them more error-prone, as invalid operations
in the code are detected late at run-time, or worse, remain hidden by being automat-
ically converted to another type, and eventually result in an incorrect computation.
Moreover, large codebases may be hard to maintain due to the lack of static type
information for the programmer and the toolchain (linter, auto-completion, etc.).

In this manuscript, we aim to design a static type system that could be inte-
grated into a dynamic language (in the same way as TypeScript adds static types to
JavaScript), that would provide static safety properties (in particular, if a program
type-checks, then no type error should occur at run-time), and that would be doing
so without restraining the features of the language. Of course, a compromise has
to be found as some features of dynamic languages are notoriously difficult to type,
such as the eval function available in many dynamic languages (Python, JavaScript,
PHP, R, etc.). This thesis focuses on the “dynamic dispatch” aspect of dynamic
languages: we will be trying to infer types for overloaded functions that perform
dynamic tests of types. The type system we design works on a pure language, and
thus cannot be directly applied to a dynamic language with a mutable state. Future
work is required in order to support side effects, and to integrate gradual typing
into our type system. Gradual typing allows typed and untyped code to coexist,
which is essential for introducing a type system into an existing language, since it
allows libraries to be typed incrementally. Gradual typing may also be useful in
the presence of reflection, such as the eval function2, since we cannot expect such
operations to be typeable in the general case. This future work will be discussed in
Chapter 10.

1Still, it is possible to write static type annotations, but those are ignored by the Python inter-
preter. These static type annotations may however be used by external tools such as Mypy (Jukka
Lehtosalo).

2Although it is often discouraged, the use of eval is pervasive in some languages: it is often
used for meta-programming purposes in languages that do not feature macros, as observed by Goel
et al. (2021) for the language R.

6 Chapter 1. Introduction

1.2 Motivations

Typing dynamic languages is a challenging endeavor even for very simple pieces of
code. For instance, JavaScript’s logical or operator “||” behaves like the following
function3 (also in JavaScript):

4 function lOr (x, y) {

5 if (x) { return x; } else { return y; }

6 }

A naive type for this function is pBool, Boolq Ñ Bool, which states that lOr is a
function that takes two Boolean arguments and returns a Boolean result. This
however is an overly restrictive type, that does not account for the fact that in
JavaScript logical operators such as lOr can be applied to any pairs of arguments,
not just to Boolean ones. JavaScript distinguishes two kinds of values: eight “falsy”
values (i.e., false, "", 0, -0, 0n, undefined, null, and NaN) and the “truthy” values (all
the others). The expression if executes the else code if and only if the tested value
is falsy. If we want to change the previous type to account for this fact, then we
should give lOr the type pAny, Anyq Ñ Any (where Any is the type of all values), which
is a rather useless type since it essentially states that lOr is a binary function. To
give lOr a more informative type, we need union and intersection types (which are
already integrated in typed versions of JavaScript such as TypeScript (Microsoft) and
Flow (Facebook)): we define the type Falsy as the following union type false_ ""_

0_ -0_ 0n_ undefined_ null_ NaN, where each value denotes here the singleton type
containing that value, and the type Truthy to be its complement, ␣Falsy, that is,
the type of all values that are not of type Falsy. Then we can deduce for lOr the
following more precise type:

ppTruthy, Anyq Ñ Truthyq

^ ppFalsy, Truthyq Ñ Truthyq

^ ppFalsy, Falsyq Ñ Falsyq

(1.1)

In this type, ^ is a type combinator denoting intersection and meaning that the
function has all the types given in the intersection: that is, in words, if the first
argument of a function of this type is a Truthy, then the function returns a Truthy

regardless of the second argument (first arrow type), while if the first argument is a
Falsy, then the result is of the same type as the second argument’s type (second and
third arrow type). Notice how the use of an intersection of arrow types corresponds
to the typing of an “overloading” behavior (also known as ad hoc polymorphism,
Strachey (1967)), insofar as the type of the result of an application depends on the
type of the input.

In order to derive such a type, the type system must deduce that whenever the
condition tested by the if holds, then x is of type Truthy and, therefore, piq that
all occurrences of x in the “then” branch (here just one) have type Truthy and piiq

3This definition does not capture the short-circuit evaluation of “||”.

1.2. Motivations 7

that all the occurrences of the same variable x in the branch “else” (here none) have
thus type Falsy. This kind of deduction is usually referred as type narrowing or
occurrence typing since it requires to “narrow” the type of a variable x differently
for its different occurrences. A type system such as the one for Typed Racket—
defined in (Tobin-Hochstadt and Felleisen, 2010) where the term occurrence typing
was first introduced—is able to check that lOr has the type in (1.1), meaning that
the deduction requires the programmer to explicitly specify the type in the code
(though, Typed Racket has no negation types).

We can go a step further and type lOr using an intersection of polymorphic
function types, yielding the following type (where α and β are type variables):

@α, β . ppα^ Truthy, Anyq Ñ α^ Truthyq ^ ppFalsy, βq Ñ βq (1.2)

This type can be considered as an encoding of the following type, expressed in
so-called bounded polymorphism4:

@pα ď Truthyq.@pβq . ppα, Anyq Ñ αq ^ ppFalsy, βq Ñ βq

It completely specifies the semantics of the function lOr: it states that if the first
argument is a Truthy, then the application of the function returns the first argu-
ment5, otherwise it returns the second argument. This type is more precise than
the one in (1.1), since it allows the system to deduce that, say, if the first argument
of lOr is an object, then the result will be an object of the same type (rather than
just a truthy value).

The type system described in this manuscript is not only capable of checking such
a type, but also to infer it (i.e., to reconstruct it, without requiring the programmer
to write explicit type annotations). Still, it does not seem too hard a feat to deduce
that if we are testing whether x is a truthy value, then when the test succeeds we
can assume that x is of type Truthy. To show the more advanced capabilities of our
system let us have a look at how ECMAScript specifies the semantics of JavaScript
logical operators, as defined in the 2021 version of the specification (Ecma, 2021,
Section 13.13.1). Since in JavaScript there are no union or intersection types, then
the falsy and truthy values are defined via an (abstract) function ToBoolean which
simply checks whether its argument is one of the 8 falsy values and returns false,
otherwise it returns true. In our system, ToBoolean has type pTruthy Ñ trueq ^

pFalsyÑ falseq. All logical operators are then defined by ECMAScript in terms of
this function: this has the advantage that any change to the specification of falsy
(e.g., the addition of a new falsy value, like the addition of the built-in bigint type
and its constant 0n in ES2020) requires only the modification of this function, and

4A type @ps1 ď α ď s2q. t can be encoded by the type @α.t1 where t1 is obtained by replacing
every occurrence of α in t by pα _ s1q ^ s2. See Castagna (2024, Section 2) for more details.

5Strictly speaking, the type states that the function returns a result of the same type as the first
argument, but by parametricity we can deduce that the result will be the first argument. Likewise
for the second argument. A simple way to understand it is by instantiating both type variables in
(1.2) with the singleton type of the (value result of the) argument.

8 Chapter 1. Introduction

is automatically propagated to all operators. So the actual definition of lOr for
ECMAScript is the following one:

7 function lOr (x, y) {

8 if (ToBoolean(x)) { return x; } else { return y; }

9 }

If we feed this function to our system, then it infers for it the type in (1.2), that is, the
same type it already deduced for the simpler version of lOr defined in lines 4-6. But
here the deduction needed to perform occurrence typing is more challenging, since
the system must deduce from the type pTruthyÑ trueq^pFalsyÑ falseq of ToBoolean
that when the application in line 8 returns a truthy value, then the argument of
ToBoolean is of type Truthy, and it is of type Falsy otherwise. More generally, we
need a system which, when a test is performed on an arbitrarily complex application,
can narrow the type of all the variables occurring in the application by exploiting
the information provided by the overloaded behavior of the functions therein.

Achieving such a degree of precision is a hard feat but, we argue, it is necessary
if we want to reconstruct types for dynamic languages. Indeed, the core operators
of these languages (e.g., JavaScript’s “||”, “&&”, “typeof”, . . .) are characterized by
an “overloaded” behavior, which is then passed over to the functions that use them.
So for instance a simple use of JavaScript logical or “||” such as in the anonymous
function ((x) => x || 42) results in a function whose precise type, as reconstructed
by our system, is pFalsy Ñ 42q ^ pTruthy ^ α Ñ Truthy ^ αq. JavaScript functions
also routinely perform dynamic checks against constants (notably null and undefined),
which our system also handles as part of its more general approach to type narrowing
of arbitrary expressions.

1.3 Contributions

This manuscript aims to apply the power of set-theoretic types to dynamic lan-
guages featuring type-cases, first-order functions and polymorphism. Consequently,
it makes an extensive use of prior work on set-theoretic types, such as Frisch (2004);
Frisch et al. (2008); Castagna and Xu (2011).

Polymorphic type systems based on set-theoretic types have already been studied
by Castagna et al. (2014, 2015), but for a language where λ-abstractions are explic-
itly typed. This manuscript proposes a new approach where λ-abstractions are not
explicitly typed, and where our type system is able to infer the type of polymor-
phic and overloaded functions, while also fully capturing the essence of occurrence
typing.

The general contribution of this work is twofold. First, it proposes a way to mix
parametric, intersection/ad hoc polymorphism, and occurrence typing inside a for-
mal system of deduction rules (the declarative type system). While the rules compos-
ing this formal system are not novel (intersection-introduction, union-elimination,
instantiation, etc.), combining them all together in a type system requires some

1.4. Timeline and scientific production 9

care, in particular for the union-elimination rule, and is an original work.
Second, it proposes an effective way to implement this type discipline by defining

a reconstruction algorithm; with respect to that, a fundamental role is played by
the analysis of the type tests performed by the expressions, since they drive the
way in which types are split: externally, to split the domain of functions yielding
intersection of arrows (intersection-introduction); internally, to split the type of
tested expressions, yielding a precise typing of branching (union-elimination). In
doing so, it provides the first system that reconstructs types and that combines
parametric and ad hoc polymorphism.

The technical contributions of this work can be summarized as follows:

• We define a declarative type system that combines parametric polymorphism
with union and intersection types for a functional calculus with type-cases,
and we prove its soundness.

• We define an algorithmic system that we prove sound and complete with re-
spect to the previous system.

• We define an algorithm to reconstruct the type annotations of the previous al-
gorithmic system, allowing the inference of overloaded and polymorphic types
for functions.

• We provide several extensions, enriching our language with records, let-
bindings, pattern-matching expressions, and user type annotations.

• We provide a full implementation of the algorithmic system and reconstruc-
tion algorithm with the extensions, available online (https://www.cduce.org/
dynlang/, Castagna et al. (2024b)).

1.4 Timeline and scientific production

The approach presented in this manuscript is the successor of two prior attempts.
These two prior attempts are not detailed in this manuscript as we consider the
present approach to be a strict improvement, both in terms of expressivity and
presentation. Still, they are briefly described and compared to the present approach
in this section.

The first approach that we explored aimed at integrating occurrence typing
(Tobin-Hochstadt and Felleisen (2008)) into a type system based on set-theoretic
types, by refining the environment using an auxiliary deduction system before typ-
ing the branches of a type-case. In order to remember type information about
complex expressions, the type environment was extended: in addition to storing
type information about variables, it could hold information about the type of ar-
bitrary expressions. For instance, when typing the first branch of an expression
if (f(x)) { ... } else { ... }, the environment would map the expression f(x) to the
type Truthy, and when typing the else branch it would map f(x) to the type Falsy.
This capability of the environment to contain type information about arbitrary ex-

https://www.cduce.org/dynlang/
https://www.cduce.org/dynlang/

10 Chapter 1. Introduction

pressions adds some complexity to the declarative type system. To that complexity
one also needs to add the complexity of the auxiliary deduction system used for re-
fining the type environment (from the information that f(x) is Truthy, we may also
learn type information about f and x). In the end, the type system proposed was
complex, and we did not manage to propose an algorithmic version of this system
that is both sound and complete (we proposed one that was sound, and that was
complete for a restricted set of derivations). Nevertheless, this approach brought
some novel ideas to set-theoretic type systems and has been published in Castagna
et al. (2022a).

The second approach we explored is very different, though it follows the same
goal, namely, integrating occurrence typing into a set-theoretic type system. Instead
of using complex rules for type-cases, it features two very simple rules. The first one
only applies when the type of the tested expression e is a subtype of the tested type
t, in which case we only need to type the first branch. Conversely, the second rule
applies when the type of e is disjoint from t, in which case only the second branch
is typed. These two rules alone do not cover the general case, but the idea is to
combine them with the union-elimination rule (from Barbanera et al. (1995)), a rule
allowing to split the type of a subexpression into several smaller types and to consider
each case separately. This combination of rules captures the essence of occurrence
typing, yet still keeping a very simple declarative type system. Finding derivations
for this type system, however, is challenging: we have to decide when to apply this
union-elimination rule, on which subexpression, and how to decompose the type of
this subexpression. The main development of this work thus consists in restricting
the use of the union-elimination rule in a controlled way, and to use it to define
an algorithmic type system that is both sound and complete with respect to the
declarative one. This algorithmic type system, however, requires type annotations
to be inserted in the expression we want to type. The last part of this work aims to
define an inference algorithm whose role is to reconstruct those annotations. It is
unable, however, to infer higher-order types for function arguments. This approach
has led to a publication and presentation at POPL 2022 (Castagna et al., 2022b).

The present work can be seen as a polymorphic extension of this second ap-
proach, though its also has other benefits (in particular, a better type inference,
made possible by the introduction of type variables). It borrows some key notions
from it, such as piq the combination of the union elimination rule with two sim-
ple rules for type-cases in order to capture the essence of occurrence typing, and
piiq the way to restrict the use of the union-elimination rule in order to obtain an
algorithmic type system. However, the introduction of polymorphic types greatly
modifies the meta-theory. Besides its influence on the union-elimination rule, the
presence of type variables suggests a new approach for type inference, inspired by W
from Damas and Milner (1982): parameters of λ-abstractions are first typed using a
fresh type variable α, acting as a symbolic marker which is then substituted as new
constraints are discovered. This yields a clear improvement, with the capability to
infer higher-order types and types of recursive functions. This work has been pub-
lished and presented at POPL 2024 (Castagna et al., 2024a). In this manuscript,

1.5. Outline 11

we give a more detailed presentation of this approach, including several practical
considerations and discussions.

1.5 Outline

Part I: Context and Motivations This part introduces the motivations and the
challenges of our approach, and explains some fundamental notions about set-
theoretic types.

Chapter 2: Background This chapter introduces the notions of set-
theoretic types that will be used throughout this manuscript. All the for-
malizations and results presented in this chapter come from previous work
(Frisch, 2004; Castagna et al., 2014, 2015).

Set-theoretic types add to the usual type constructors (arrow Ñ and product
ˆ) the possibility to express the union _ of two types, the intersection ^ of
two types, and the negation ␣ of a type.

The first challenge is to define a subtyping relation over these types. To this
purpose, we associate to each type t an interpretation JtK as a set of values:
for instance, the interpretation of Intˆ Bool is the set of all pairs whose first
component is an integer, and whose second component is a Boolean. Note,
however, that this interpretation is more difficult to define for function types,
and requires special care. Using this interpretation, subtyping is naturally
defined as follows: a type t1 is a subtype of a type t2 if and only if the set
Jt1K is a subset of Jt2K. This subtyping relation is often referred to as semantic
subtyping.

This formal definition of subtyping is all well and good, but it involves infinite
sets that cannot easily be manipulated in an algorithm. Thus, the second
challenge consists in finding a way to decide this subtyping relation. Instead
of dealing with interpretations, the subtyping algorithm directly works on the
syntactic tree of types. A special representation is defined for types: the
Disjunctive Normal Form (DNF). Each type can be represented by a DNF,
and this form makes it simpler to decide subtyping, and more generally, to
implement operators over types.

Finally, the last challenge tackled in this chapter consists in the resolution
of subtyping constraints involving type variables. Given a set of subtyping
constraints ts1 9ď t1 ; ... ; sn 9ď tnu, we want to find all type substitutions ϕ
such that @i P 1 . . n. siϕ ď tiϕ. This problem, called tallying, is decidable,
and it will be a key operation of our type inference.

Chapter 3: Core Language This chapter formalizes the syntax and the
semantics of our language. We start with the usual call-by-value λ-calculus,

12 Chapter 1. Introduction

with constants and pairs, and extend it with a type-case construct (ePτ) ? e : e,
where τ is a type that does not contain any arrow type except Empty Ñ Any

(the supertype of all functions). In practice, this means that we can check
whether a value is a λ-abstraction or not, but we cannot check, for instance,
whether this λ-abstraction accepts integers as input or not. This restriction
is necessary to give a proper semantics to type-cases: as our λ-abstractions
are not explicitly annotated with their type, it is not possible, at run-time, to
determine the type of a λ-abstraction.

This type-case construct is very simple, and yet challenging to type. As illus-
trated by our introductory example, typing an expression (ePτ) ? e1 : e2 may
require performing occurrence typing: the first branch e1 (respectively, the
second branch e2) may only be typeable under a refined type environment
that accounts for the fact that the expression e reduces to a value of type τ
(respectively, of type ␣τ). Additionally, type-cases make it possible to write
functions with an overloaded behavior. This overloaded behavior should be
captured by our type system, forcing us to derive intersection types for func-
tions.

Another challenge that is discussed in this chapter is the need for modularity.
When typing a consequent codebase, consisting in several successive defini-
tions, the type inferred for a definition should not depend on later definitions.
For instance, a library should be typeable independently of the projects that
use it. To capture this notion of modularity, we introduce the notion of pro-
grams, consisting in a sequence of top-level definitions that must be typed one
after the other.

Part II: Core Formalization This section is dedicated to the formalization of a
system that addresses the issues raised in the previous part. To this purpose,
it defines: piq a declarative type system, composed of a set of simple yet
powerful deduction rules, piiq an algorithmic type system, equivalent to the
declarative one, but whose rules are syntax-directed and analytic, and piiiq a
reconstruction algorithm, that aims to reconstruct the annotations required
by the algorithmic type system.

Chapter 4: Declarative Type System This chapter formalizes the
declarative type system. Conceptually, it is quite simple: it just merges to-
gether three of the most expressive type systems studied in the literature,
namely the Hindley-Milner polymorphic types (Hindley, 1969; Milner, 1978),
intersection types (Coppo et al., 1981), and union types (MacQueen et al.,
1986; Barbanera et al., 1995). We achieve it simply by putting together in
a controlled way the deduction rules characteristic of each of these systems,
detailed below, and proving that the resulting system is sound.

As seen with our introductory example, intersection types can be used to
capture the behavior of overloaded functions. To derive intersection types for

1.5. Outline 13

functions, we add to our type system the intersection-introduction rule: if we
can derive the type t1 and the type t2 for an expression e, then we can derive
for it the type t1 ^ t2.

Union types are used to implement occurrence typing. The power of union
types is exploited by the union-elimination rule: given an expression e that we
want to type, and a subexpression e1 of e whose type can be decomposed into
a union t1 _ t2, we can choose to split the typing derivation in two indepen-
dent branches, one that assumes that occurrences of this subexpression have
type t1, and the other that assumes that they have type t2. This mechanics,
coupled with simple rules for type-cases that allow skipping a branch when it
is unreachable6, makes it possible to type a branch of a type-case only under
the type environments for which it is reachable. Thus, this mechanism fully
captures the essence of occurrence typing.

Lastly, Hindley-Milner parametric polymorphism is required to make our type
system modular. While intersection types can be used to capture the behavior
of overloaded functions, they cannot fully capture the behavior of generic
functions, as it would require infinitely-many intersections: for instance, the
identity function can be approximated by an intersection type such as pIntÑ
Intq ^ p␣Int Ñ ␣Intq, but this type is only suitable if we know that this
function will only be applied to arguments of type Int and ␣Int. In a modular
language, however, we do not know in advance in which contexts this function
will be used. Parametric polymorphism brings a solution to this problem,
allowing us to type the identity function α Ñ α and to freely instantiate the
type variable α later, whenever this function is used.

The type system we obtain is powerful, but it is non-algorithmic: derivations
for the same typing judgment are not unique, and can have very different
shapes, largely due to the union-elimination rule. Along the way to proving
the type safety of this system, we restrict the shape of typing derivations by
defining a notion of canonical derivations, and we describe a normalization
process to turn any derivation into a canonical derivation. In particular, we
show that the union-elimination rule only needs to be applied once on each
subexpression, and we further restrict the locations in the derivation where it
can be applied. This notion of canonical derivation is a first step towards an
algorithmic type system.

Chapter 5: Algorithmic Type System This chapter defines an algorith-
mic type system, sound and complete with respect to the declarative one of
Chapter 4. To be algorithmic, a type system must satisfy two properties: piq

6Three typing rules in total: one that covers the case where the tested expression has the empty
type Empty and thus both branches are unreachable, and the two others that cover the cases where
one of the branches is unreachable.

14 Chapter 1. Introduction

it must be syntax-directed, and piiq all its rules must be analytic7.

A type system is syntax-directed when the syntax of the expression we are
typing uniquely identifies which rule to apply. This is not the case of the
declarative type system, in particular because of the union-elimination rule:
this rule can be used on any expression e to decompose the type of any subex-
pression e1 of e. In order to make the type system syntax-directed, we restrict
the use of the union-elimination rule according to the shape of the canonical
derivations characterized in Chapter 4. Roughly, when typing an expression
e, we apply the union-elimination rule only once on every subexpression e1

of e, and we do so as soon as all the free variables of e1 are in the typing
environment. To implement this behavior in the algorithmic type system, we
first transform the expression e into a canonical form κ, which consists in a
sequence of bindings associating variables to expressions in which every proper
subexpression is a variable. For instance, a canonical form for the expression
pf x, f xq is bind y = f x in bind z = py, yq in z . The advantage of this form is
that each subexpression of e is now bound to a variable: the algorithmic type
system can thus simply apply the union-elimination rule once on each bind

definition. However, in order to preserve typeability, canonical forms must sat-
isfy some properties: in particular, two syntactically equivalent subexpressions
must be bound to the same variable (this constraint is necessary to preserve
the correlation between the different occurrences of a same subexpression). A
canonical form that satisfies this property—and two others—is called Maximal
Sharing Canonical (MSC) form. We prove that any expression e has a unique
MSC form, noted MSCpeq, and we provide a way to compute it.

To have an algorithmic type system, we also need all rules to be analytic.
Again, the union-elimination rule is problematic: the type decomposition t1_
..._tn cannot be deduced from the conclusion of the rule. Another non-analytic
rule is the rule for typing λ-abstractions, as it guesses a type for the parameter.
To make these rules analytic, the judgments derived by the algorithmic type
system are modified: in addition to a type environment Γ and a canonical
form κ, they take as additional input an annotation tree that specifies these
elements. This triplet formed of a type environment, a canonical form, and
an annotation tree, uniquely encodes a canonical derivation of the declarative
type system. Thus, we have reduced the problem of finding a derivation for
an expression e with the declarative type system to the problem of finding
an annotation tree that makes MSCpeq typeable with the algorithmic type
system.

Chapter 6: Reconstruction Algorithm This chapter describes an algo-
rithm to reconstruct the annotation tree used by the algorithmic type system

7A rule is analytic (as opposed to synthetic) when the input of the judgment at the conclusion
(i.e., the type environment and the expression) is sufficient to determine the inputs of the judgments
at the premises (cf. Martin-Löf (1994); Types (2019)).

1.5. Outline 15

defined in Chapter 5. This algorithm is described by a system of deduction
rules that incrementally refines (using backtracking) an annotation tree, ini-
tially composed of a single node “infer”. It mixes two mechanisms: piq one
that infers the domain(s) of λ-abstractions and that is inspired by algorithm
W by Damas and Milner (1982), and piiq the other that infers the type de-
compositions to be used by the applications of the union-elimination rule on
each bind definition.

The first mechanism starts by typing each parameter of a λ-abstraction with
a fresh type variable, used as a symbolic marker that is then substituted as
new constraints are discovered. The main difference with W is that, while
W uses unification to solve syntactic constraints, we have to solve constraints
of semantic subtyping: for that, we rely on the tallying algorithm defined in
Chapter 2. The solutions to a tallying instance are characterized by a principal
finite set of substitutions, forcing our reconstruction algorithm to branch in
order to consider each substitution separately.

The second mechanism, for inferring the type decompositions to be used by
the union-elimination rule, is triggered by type-cases. Whenever a type-case
(xPτ) ? y : z is encountered, the type decomposition associated to x is refined:
the type of x is split into τ and ␣τ . More precisely, if the current type
environment is Γ, the reconstruction algorithm considers two branches: one
in which x has type Γpxq ^ τ , and another in which x has type Γpxq ^ ␣τ .
This decomposition is then backpropagated to other variables appearing in
the definition of x.

The reconstruction algorithm we obtain is not complete: it may fail to recon-
struct an annotation tree for an expression e even if e is typeable with the
declarative type system. Still, it yields a type inference that is evaluated in
the next part.

Part III: Towards a Practical Language In this part, we start from the core
formalization defined in Part II and transform it into a practical implemen-
tation. The language is extended with new constructs (such as records, let-
bindings, and pattern-matching), and some optimizations for the reconstruc-
tion algorithm are discussed. In addition, a prototype implementation is pre-
sented and evaluated on several examples.

Chapter 7: Extensions This chapter extends the source language with
several new constructs: piq records, which are implemented in many languages
and can also be used to encode objects of object-oriented languages such as
JavaScript, piiq user type annotations, which may be used to compensate for
the incompleteness of the reconstruction, piiiq let-bindings, and pivq pattern-
matching, which is encoded in our language using let-bindings and type-cases.

16 Chapter 1. Introduction

Chapter 8: Practical Aspects This chapter presents several optimiza-
tions and heuristics for the reconstruction algorithm: a system that trims re-
dundant branches of the annotation tree, some heuristics for simplifying types
and substitutions, and a caching system based on memoization. Because of
the branching nature of the reconstruction algorithm, these optimizations are
necessary to reduce the combinatorial explosion of cases.

Chapter 9: Prototype Implementation This chapter presents a pro-
totype implementation for the algorithmic type system and reconstruction
algorithm. Although it is a prototype, favoring proximity to the formaliza-
tion rather than heavy optimization, it fully implements the extensions and
optimizations introduced in Chapter 8. This prototype is then evaluated on
several examples, highlighting its strengths and weaknesses, and the impact
of the different optimizations on performance.

Chapter 10: Discussion and Conclusion This chapter discusses the lim-
itations of our approach, and shows how user type annotations can be used
to compensate for the incompleteness of the reconstruction algorithm and im-
prove performance. It concludes with a related work section and a discussion
of future work: in addition to improving performance, some extensions must
be studied and implemented if we want to integrate this type system in a
real-world language, such as gradual typing (so that the type system can be
deployed progressively without having to type the entire codebase), the gen-
eration of simple and relevant error messages, and the support of side effects
(if the target language is not pure).

Chapter 2

Background

Contents
2.1 Set-theoretic types . 17
2.2 Type substitutions . 18
2.3 Type interpretation . 19
2.4 Semantic subtyping . 22
2.5 Disjunctive Normal Form and type operators 23
2.6 The tallying problem . 24

This thesis builds on pre-existing work. We recall in this chapter the basic
definitions and theorem that we reuse and refer to the relevant publications for
details and proofs.

2.1 Set-theoretic types

Most of this work is built on the set-theoretic type theory, introduced by Frisch
(2004) and extended with type variables by Castagna and Xu (2011).

Definition 1 (Set-theoretic types). The set T of set-theoretic types is the set
of regular and contractive terms coinductively defined by the following grammar:

Types t ::“ b | α | tÑ t | tˆ t | t_ t | t^ t | ␣t | 0 | 1

where b P B is a base type and α P V a type variable. When writing a term, we
use the following precedence (by decreasing priority): ␣, ^, _, ˆ, Ñ.
The notation t1zt2 is a syntactic sugar for t1 ^␣t2.

The set B of base types and the set V of type variables are fixed, and we note
T the set of types. Types are ranged over by meta-variables t and s.

As they are defined coinductively, types can be infinite trees, provided that they
satisfy the constraints of regularity and contractivity explained below. This yields a
definition of equirecursive types that does not require explicit binders for recursion.

A term is said regular if it only has a finite number of distinct subterms, and
contractive if every infinite branch goes through an infinite number of arrows and
products (Ñ and ˆ). The contractivity constraint ensures that every type has a

18 Chapter 2. Background

meaningful interpretation: for instance, it prevents from expressing types such as the
one satisfying the equation t “ ␣t. The regularity constraint ensures decidability
of the subtyping relation that we will define in the next sections.

The set of base types should be chosen according to the constants of the language.
For each constant of the language, we have the associated base type (also called
singleton type): the base type True for the constant true, the base type False for
the constant false, the base type 42 for the constant 42, and so on. Constants
are written lowercased, while types are written capitalized. In the examples below,
we assume that our language features the usual constants (true, false, integers,
etc.), and the associated singleton types. We also define the base type Bool (it is
convenient to have it as a base type even though we can construct it as the union
True_ False), as well as the base type Int. Note that Bool and Int are base types,
but not singleton types, because they have more than one inhabitant.

The type 0 is a special type that is not inhabited by any value, and is the subtype
of all types. Conversely, the type 1 is the supertype of all types.

The ˆ constructor is used to type pairs of our language. Intuitively, it corre-
sponds to the Cartesian product of two types. In particular, the product 1 ˆ 1 is
the supertype of all pairs: any well-typed pair can be typed with 1ˆ 1.

The Ñ constructor is used to type functions (i.e., λ-abstractions). Intuitively, a
λ-abstraction has type t1 Ñ t2 if and only if it accepts as argument a value of type
t1, in which case either it yields a value of type t2 or it diverges. The type 0 Ñ 1 is
the supertype of all functions. Using the intersection ^, it is possible to express the
type of overloaded functions. For instance, a function mapping integers to Boolean
and Boolean to integers can be given the type pIntÑ Boolq ^ pBoolÑ Intq. This
capability of types to capture the behavior of overloaded functions is sometimes
called ad hoc polymorphism.

Type variables α can be used by the type system to handle parametric polymor-
phism. However, at the level of the type algebra, type variables are not quantified:
this will be handled by the type system.

2.2 Type substitutions

For any type t, we note varsptq the set of type variables occurring in t. A formal
definition of varsptq will be given later.

Definition 2 (Ground type). A type t is a ground type if varsptq “ ∅.

Definition 3 (Type substitution). A type substitution is a function ϕ : V Ñ T
from type variables to types which is the identity everywhere except for a finite
set of type variables, called its domain and denoted by dompϕq.

2.3. Type interpretation 19

Definition 4 (Application of a type substitution). The result of the application
of a type substitution ϕ to a type t, noted tϕ, is the type satisfying these equations:

αϕ “ ϕpαq pt1 ˆ t2qϕ “ pt1ϕq ˆ pt2ϕq pt1 _ t2qϕ “ pt1ϕq _ pt2ϕq

bϕ “ b pt1 Ñ t2qϕ “ pt1ϕq Ñ pt2ϕq p␣tqϕ “ ␣ptϕq

0ϕ “ 0

Note that this system of equations has a unique solution, and this solution is a
type as defined by Definition 1 (in particular, it is contractive and regular).

We use Φ to range over sets of type substitutions.

Definition 5 (Application of a set of type substitutions). The application of a
finite set of type substitutions Φ to a type t, noted tΦ, is defined as follows:

tΦ “
Ź

ϕPΦ tϕ

Applying a set of substitutions Φ to a type t amounts to applying all the sub-
stitutions in Φ to t independently, and then taking the intersection of the resulting
types. For instance, applying the set of substitutions ttα ⇝ Intu, tα ⇝ Booluu to
the type αÑ α yields the type pIntÑ Intq ^ pBoolÑ Boolq.

Notation.
dompϕq . “

def
tα P V | ϕpαq ‰ αu

t#V . ô varsptq X V “ ∅
∅ . The identity type substitution
tα1 ⇝ t1 ; . . . ; αn ⇝ tnu Type substitution mapping αi to ti for i P 1 . . n
ϕ1 ˝ ϕ2 .Composition of substitutions ϕ1 and ϕ2
ϕ

ˇ

ˇ

V
. Restriction of ϕ to the domain V

ϕ#V . ô dompϕq X V “ ∅
varspϕq . “def

tvarspϕpαqqztαu | α P dompϕqu

2.3 Type interpretation

In order to define subtyping over these types, the idea is to interpret each ground
type (i.e., a type that does not contain type variables) as a set of values of our
language. Then, subtyping can be defined as set containment over the interpretation
of types. Intuitively, each ground type is associated to the set of values having this
type: for instance, the base type True is interpreted as the singleton containing
the constant true, while the type Bool “ True _ False is interpreted as the set
ttrue, falseu.

20 Chapter 2. Background

However, this idea becomes subtler when dealing with arrow types. Although an
arrow type intuitively corresponds to a function (i.e., a λ-abstraction), interpreting
an arrow type as a set of λ-abstractions is problematic as it yields a circular rea-
soning: determining if a λ-abstraction is in the interpretation of a type requires to
define a type system, which in turns needs the subtyping relation that we are trying
to build. In order to break this circularity, the interpretation of types is not defined
over values of our language but over a domain D defined below. Note that this does
not necessarily invalidate the “types as set of values” intuition, as it is discussed in
Castagna and Frisch (2005, Section 2.7).

Regarding polymorphic types, one may think that it is enough to define an
interpretation only for ground types, and then define subtyping by stating that
a type s is a subtype of a type t if and only if, for every instance of s and t,
respectively sϕ and tϕ, if sϕ and tϕ are ground types then the interpretation of
sϕ is contained in the interpretation of tϕ. However, Hosoya et al. (2005) show
that this definition of subtyping for non-ground types is hard to decide and has
counterintuitive consequences.

Consequently, we need to define an interpretation for all types, and not only
ground ones (the interpretation domain D should account for type variables). A
simple model was proposed by Gesbert et al. (2015). We succinctly present it in
this section. The reader may refer to (Castagna, 2024, Section 3.3) for more details.

Definition 6 (Interpretation domain Gesbert et al. (2015)). The interpretation
domain D is the set of finite terms d produced inductively by the following gram-
mar

d ::“ cL | pd, dqL | tpd, Bq, . . . , pd, BquL

B ::“ d | Ω

where c ranges over the set C of constants, L ranges over finite sets of type
variables, and where Ω is such that Ω R D.

The elements of D correspond, intuitively, to (denotations of) the results of the
evaluation of expressions, labeled by finite sets of type variables. In particular, in a
higher-order language, the results of computations can be functions which, in this
model, are represented by sets of finite relations of the form tpd1, B1q, . . . , pdn, Bnqu

L,
where Ω (which is not in D) can appear in second components to signify that the
function fails (i.e., evaluation is stuck) on the corresponding input. This is imple-
mented by using in the second projection the meta-variable B which ranges over
DΩ “ D Y tΩu (we reserve d to range over D, thus excluding Ω). This constant Ω

is used to ensure that 1 Ñ 1 is not a supertype of all function types: if we used
d instead of B, then every well-typed function could be subsumed to 1 Ñ 1 and,
therefore, every application could be given the type 1, independently of its argu-
ment as long as this argument is typeable (see Section 4.2 of Frisch et al. (2008)

2.3. Type interpretation 21

for details). The restriction to finite relations corresponds to the intuition that the
denotational semantics of a function is given by the set of its finite approximations,
where finiteness is a restriction necessary (for cardinality reasons) to give the se-
mantics to higher-order functions. Finally, the sets of type variables that label the
elements of the domain are used to interpret type variables: we interpret a type vari-
able α by the set of all elements that are labeled by α, that is JαK “ td | α P tagspdqu
(where we define tagspcLq “ tagsppd, d1qLq “ tagsptpd1, B1q, . . . , pdn, BnquLq “ L).

We define the interpretation JtK of a type t so that it satisfies the following
equalities, where Pfin denotes the restriction of the powerset to finite subsets and B
denotes the function that assigns to each base type the set of constants of that type,
so that for every constant c we have c P Bpbcq (we use bc to denote the base type of
the constant c):

J0K “ ∅ JαK “ td | α P tagspdqu Jt1 _ t2K “ Jt1KY Jt2K

JbK “ Bpbq J␣tK “ DzJtK Jt1 ˆ t2K “ Jt1Kˆ Jt2K

Jt1Ñt2K “ tR P PfinpD ˆDΩq | @pd, Bq P R. d P Jt1K ùñ B P Jt2Ku

Note that, even though we included 1 and the intersection ^ in the syntax of our
types (Definition 1), those two can be defined from the other constructors: 1 “ ␣0
and t1 ^ t2 “ ␣p␣t1 _ ␣t2q (De Morgan’s law). It is easy to see that, with these
definitions, we have J1K “ D and Jt1^ t2K “ Jt1KX Jt2K. Thus, it is not necessary to
define an interpretation for them.

We cannot take the equations above directly as an inductive definition of JK
because types are not defined inductively but coinductively. Notice however that
the contractivity condition of Definition 1 ensures that the binary relation ŹĎT ˆT
defined by t1 _ t2 Ź ti, t1 ^ t2 Ź ti, ␣t Ź t is Noetherian. This gives an induction
principle1 on T that we use combined with structural induction on D to give the
following definition, which validates the equalities above.

Definition 7 (Set-theoretic interpretation of types). We define a binary predicate
pd : tq (“the element d belongs to the type t”), where d P D and t P T , by induction
on the pair pd, tq ordered lexicographically. The predicate is defined as follows:

pc : bq “ c P Bpbq

pd : αq “ α P tagspdq

ppd1, d2q : t1 ˆ t2q “ pd1 : t1q and pd2 : t2q

ptpd1, B1q, ..., pdn, Bnqu : t1 Ñ t2q “ @i P r1..ns. if pdi : t1q then pBi : t2q

pd : t1 _ t2q “ pd : t1q or pd : t2q

pd : ␣tq “ not pd : tq

pB : tq “ false otherwise

1In a nutshell, we can do proofs and give definitions by induction on the structure of unions
and negations—and, thus, intersections—but arrows, products, and base types are the base cases
for the induction.

22 Chapter 2. Background

We define the set-theoretic interpretation J.K : T Ñ PpDq as JtK “ td P D | pd :

tqu.

2.4 Semantic subtyping

Now that we have a set-theoretic interpretation of types, we can define the subtyping
preorder and its associated equivalence relation as follows.

Definition 8 (Subtyping relation). We define the subtyping relation ď and
the subtyping equivalence relation » as t1 ď t2 ðñ

def Jt1K Ď Jt2K and t1 »

t2 ðñ
def

pt1 ď t2q and pt2 ď t1q .

This subtyping relation is sometimes referred to as semantic subtyping, as it is
not defined on the syntax of the type but on its interpretation.

This subtyping relation is decidable, as shown by Frisch (2004) for ground types
and extended to support type variables by Castagna and Xu (2011). An explanation
of the subtyping algorithm can be found in Castagna (2020).

With this set-theoretic definition of subtyping, usual properties of sets are in-
herited by subtyping, for instance:

t1 _ t2 » t2 _ t1 t1 ^ t2 » t2 ^ t1 (commutativity)
t_ t » t t^ t » t (idempotence)
␣p␣tq » t (double complement)

t_ ps1 ^ s2q » pt_ s1q ^ pt_ s2q t^ ps1 _ s2q » pt^ s1q _ pt^ s2q (distributivity)

For any two type substitutions ϕ1 and ϕ2, we write ϕ1 » ϕ2 the pointwise
subtyping equivalence of ϕ1 and ϕ2. An important property of the interpretation
above is that subtyping is preserved by type substitutions:

@t1, t2, ϕ. t1 ď t2 ñ t1ϕ ď t2ϕ

However, a naive definition of varsptq is not preserved by subtyping equivalence:
for instance, we have 1 » α_␣α, while a purely syntactic definition of varsptq would
yield varsp1q “ ∅ and varspα_␣αq “ tαu. In order to avoid this, we define varsptq
as being the set of meaningful type variables in t. This notion has been introduced
by Castagna et al. (2016a), where it was noted as mvarptq, and is defined below.

Definition 9 (Type variables). The set of type variables of a type t, noted varsptq,
is the following set of type variables:

varsptq “def
tα P V | ttα⇝ 0u fi tu

With this definition, the set of variables of a type is preserved by subtyping
equivalence: @t1, t2. t1 » t2 ñ varspt1q “ varspt2q.

2.5. Disjunctive Normal Form and type operators 23

2.5 Disjunctive Normal Form and type operators

In order to design an algorithmic type system, we need not only to decide subtyping,
but we also need a way to compute the domain of a function type, the type resulting
from an application, or the type resulting from a projection.

More formally, we want to compute the three type operators below.

Definition 10 (Type operators). Let t ď 0 Ñ 1 and t1 ď 1ˆ 1.

domptq “
def maxtu | t ď uÑ 1u

t ˝ s “
def mintu | t ď sÑ uu where s ď domptq

π1pt
1q “

def mintu | t1 ď uˆ 1u

π2pt
1q “

def mintu | t1 ď 1ˆ uu

The type domptq is the largest type that can be accepted as argument by a
function of type t: it corresponds intuitively to the domain of t. For instance, the
domain of the type pIntÑ Intq ^ pBoolÑ Boolq is Int_ Bool.

The type t ˝ s is, intuitively, the result type of t when applied to an argument of
type s. This should not be confused with the codomain of t, as the codomain does not
depend on the type of the argument: for instance, the type pIntÑ Intq ^ pBoolÑ

Boolq has the codomain Int_ Bool, but when applied to an argument of type Int,
the result type is Int.

Similarly, the types π1ptq and π2ptq respectively correspond to the result type
of the left projection and right projection of t.

In order to compute those type operators, we introduce a normal form for types,
called Disjunctive Normal Form (DNF). For that, we first define the set A of atoms
as follows:

A “ B Y V Y tt1 ˆ t2 | t1, t2 P T u Y tt1 Ñ t2 | t1, t2 P T u

Definition 11 (Disjunctive Normal Form). A Disjunctive Normal Form (DNF)
is a type t P T such that:

t ”
ł

iPI

˜

ľ

aPPi

a^
ľ

aPNi

␣a

¸

with @i P I.

˜

ľ

aPPi

a^
ľ

aPNi

␣a

¸

fi 0

where ” is the syntactic equality, I is a finite set of indices, and for every i P I,
Pi and Ni are finite sets of atoms.

Proposition 1 (Existence of a DNF). Any type t P T is equivalent to a type
t1 such that t1 is a DNF. We say that t1 is a DNF of t, and we note it t »dnf t1

(where t1 is necessarily a DNF).

24 Chapter 2. Background

We can compute a DNF of any type t by using the properties of distributivity.
Note that DNFs are not unique: a type may be equivalent to several distinct DNFs.
For instance, the two DNFs pBool_Intqˆ1 and pBoolˆ1q_pIntˆ1q are equivalent.

Using DNFs, the operators defined above can be computed as follows.
For a function type (i.e., a type that is a subtype of 0 Ñ 1) t such that

t »dnf
ł

iPI

¨

˝

ľ

p1PP 1
i

αp1 ^
ľ

n1PN 1
i

␣α1n1 ^
ľ

pPPi

psp Ñ tpq ^
ľ

nPNi

␣ps1n Ñ t1nq

˛

‚

the first two operators are computed by:

domptq “
ľ

iPI

ł

pPPi

sp

t ˝ s “
ł

iPI

¨

˝

ł

tQĹPi | sę
Ž

qPQ squ

¨

˝

ľ

pPPizQ

tp

˛

‚

˛

‚ (for s ď domptq)

For a pair type (i.e., a type that is a subtype of 1ˆ 1) t such that

t »dnf
ł

iPI

¨

˝

ľ

p1PP 1
i

αp1 ^
ľ

n1PN 1
i

␣α1n1 ^
ľ

pPPi

psp ˆ tpq ^
ľ

nPNi

␣ps1n ˆ t
1
nq

˛

‚

the last two operators are computed by:

π1ptq “
ł

iPI

ł

N 1ĎNi

˜

ľ

pPPi

sp ^
ľ

nPN 1

␣s1n

¸

π2ptq “
ł

iPI

ł

N 1ĎNi

˜

ľ

pPPi

tp ^
ľ

nPN 1

␣t1n

¸

For more details and proofs, the reader may refer to Frisch et al. (2008); Castagna
et al. (2022a).

2.6 The tallying problem

One very powerful tool when dealing with set-theoretic types is the tallying algo-
rithm. Intuitively, it is the equivalent of the unification (used in algorithm W,
Damas and Milner (1982)), but for a system with subtyping. It has been introduced
by Castagna et al. (2015).

2.6. The tallying problem 25

Definition 12 (Tallying problem). Let C be a constraint set, that is, a finite set
of pairs of types, and ∆ a set of type variables. A type substitution ϕ is a solution
to the tallying problem pC,∆q, noted ϕ ,∆ C, if ϕ#∆ and for all ps, tq P C,
sϕ ď tϕ holds.

A constraint set tpsi, tiquiPI may also be noted tsi 9ď tiuiPI .
While unification consists, for two types s and t, in finding every type substitu-

tion ϕ such that sϕ and tϕ are syntactically equivalent, tallying consists in finding
every type substitution ϕ such that sϕ ď tϕ. In the definition above, ∆ corresponds
to the type variables that cannot be substituted (ϕ#∆).

Whereas a unification problem has either no solution or an infinity of solutions
characterized by one principal type substitution, solutions to a tallying problem are
characterized by a principal finite set of type substitutions.

Proposition 2 (Principality). For every tallying problem pC,∆q, the set of all
solutions can be characterized by a finite set of type substitutions Φ such that:

@ϕ P Φ. ϕ ,∆ C (soundness)

@ϕ2. ϕ2 ,∆ C ñ Dϕ P Φ. Dϕ1. ϕ1#∆ and ϕ2 » ϕ1 ˝ ϕ (completeness)

The problem of characterizing all solutions to a tallying instance is decidable for
the system defined in this chapter. An algorithm to characterize all solutions to a
tallying instance is proposed in Castagna et al. (2015).

Tallying can be used to determine the type resulting from an application or pro-
jection involving polymorphic types. For instance, consider the application f true

where f is the polymorphic identity function of type α Ñ α. We cannot use the ˝
type operator alone to type this application, as pα Ñ αq ˝ True is not even defined
(True ę dompαÑ αq). Instead, we can consider the constraint pαÑ α, TrueÑ βq

(where β is a fresh type variable that captures the type of the result of the appli-
cation), and we solve this constraint using tallying (with ∆ “ ∅). The solutions
to this tallying instance can be characterized by one principal type substitution
ϕ “ tα ⇝ True _ α ; β ⇝ True _ α _ βu. By applying ϕ to the type of f , we
get the type True _ α Ñ True _ α, which can now be used to compute the type
resulting from the application: pTrue_αÑ True_αq ˝True “ True_α (which can
be simplified into the type True by substituting α by 0 2). Note that the tallying
algorithm may return a set Φ of several substitutions, as characterizing all the solu-
tions to a tallying instance may require more than one type substitution, in which

2More generally, when a polymorphic type variable α only occurs in covariant positions in a
type t, this type t can be simplified by substituting α by 0. Likewise, a type variable that only
occurs in contravariant positions can be substituted by 1. The type we get is an instance of t that
is smaller than t.

26 Chapter 2. Background

case we would apply the set of type substitutions Φ to the type of f , as defined in
Definition 5.

Chapter 3

Core Language

Contents
3.1 Syntax . 27
3.2 Semantics . 29
3.3 Challenges . 31

3.3.1 Occurrence typing . 31
3.3.2 Overloaded functions . 32
3.3.3 Modularity . 32
3.3.4 Type inference . 33

This chapter formalizes the language that will be used throughout this
manuscript, and presents the challenges to be met in order to type it.

3.1 Syntax

Definition 13 (Syntax of the core language). The expressions, values and pro-
grams of our core language are the finite terms produced by the following grammar:

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e
Value v ::“ c | λx.e | pv, vq

Program p ::“ letx = e ; p | e

where τ is a test type.

A test type is a ground type that does not feature any arrow except 0 Ñ 1.

Definition 14 (Test type). A test type is a type produced by the following gram-
mar:

Test Type τ ::“ b | 0 Ñ 1 | τ ˆ τ | τ _ τ | τ ^ τ | ␣τ | 0 | 1

Expressions of our language are λ-expressions with constants c P Const, variables
x P Vars, applications e e, λ-abstractions λx.e, pairs pe, eq, pair projections πie, and
type-cases (ePτ) ? e : e.

28 Chapter 3. Core Language

A type-case (e0Pτ) ? e1 : e2 is a dynamic type test that first evaluates e0 and,
then, if e0 reduces to a value v, evaluates e1 if v has type τ or e2 otherwise. Type-
cases cannot test arbitrary types but just ground types (i.e., types without type
variables occurring in them) where the only arrow type that can occur in them is 0 Ñ
1, the type of all functions. This means that type-cases can distinguish functions
from other values, but they cannot distinguish, say, functions that have type IntÑ

Int from those that do not. This restriction is necessary in order to give our language
a proper semantics: having full type tests of the form v P t would entail that we must
be able to check at run-time the types of λ-abstractions. It is possible in languages
such as CDuce, where λ-abstractions are decorated with their static type, and testing
v P t amounts to checking that t is a supertype of the function’s annotation. For us,
the problem is more complex as we consider unannotated λ-abstractions: allowing
run-time tests of arbitrary arrow types would make the definition of the dynamic
semantics to depend on the type inference algorithm. We take the approach of
restricting the run-time type tests to whether a value is a function or not. We
believe this restriction to be acceptable since in practice, the dynamic languages we
want to model can test at run-time whether a value is a function but cannot have
more precise information (for the same reason as in our language: functions are not
systematically annotated with their type, making it ambiguous to determine at run-
time whether a function has a given arrow type or not). For instance, in JavaScript,
one can write the following conditional statement:

10 if (typeof(f) === "function") {

11 return 42;

12 }

As we will see in Chapter 9, not only the type-case expression but also the typeof

function can be encoded in our language and typed. Also note that the languages
Erlang and Elixir allow testing the arity of a function. Adding this feature to our
language and type system is possible, but requires a modification of the set-theoretic
interpretation of functions (Castagna et al., 2023). Lastly, in some object-oriented
languages, functions can be “boxed” in a class or interface which has a nominal type.
This is the case, for instance, of Java where lambda expressions are translated to
classes1. The type system defined in this manuscript does not include nominal sub-
typing (in particular, the subtyping we define for records in Chapter 7 is structural),
but such an extension is discussed in the future work section (Chapter 10).

Programs are sequences of top-level definitions, ending with an expression that
can be seen as the main entry point. This notion of program is useful to capture the
modularity of our type system. Indeed, top-level definitions are typed sequentially:
the type we obtain for a top-level definition is considered definitive and will not be
challenged by a later definition. This is where parametric polymorphism becomes
useful: for instance, if the identity function λx.x is defined at top-level, it will be

1More precisely, a lambda expression is translated to the class that is expected in the current
context. Consequently, lambda expressions can only appear in contexts where the target type is
unambiguous.

3.2. Semantics 29

typed @α. αÑ α. Then, whenever this identity function is used in a later definition,
it will be instantiated as required without having to re-type it. This would not be
possible without parametric polymorphism: while the identity can be typed with
several intersections, e.g. p1 Ñ 1q ^ pInt Ñ Intq, we cannot know in advance the
types of the arguments that will be passed to it in later definitions. For instance, if
in a later top-level definition this identity function is applied to a Boolean, it will
yield the type pp1 Ñ 1q ^ pIntÑ Intqq ˝ Bool “ 1, which is not satisfying.

Definition 15 (Free variables). The set of free variables of an expression e,
noted fvpeq, is inductively defined as follows:

fvpcq “ ∅
fvpxq “ txu

fvpλx.eq “ fvpeqztxu

fvpe1e2q “ fvpe1q Y fvpe2q

fvppe1, e2qq “ fvpe1q Y fvpe2q

fvpπieq “ fvpeq i “ 1, 2

fvp(e1Pτ) ? e2 : e3q “ fvpe1q Y fvpe2q Y fvpe3q

Notation.
e1 ” e2 .Syntactic equality
e1 ”α e2 . Syntactic equivalence modulo α-renaming
e1 Ďα e2 . Subterm order modulo α-renaming

Note that, for the subterm order Ďα, a free variable is distinct from a bound
variable: we do not have x Ďα λx.x as x is free in the left-hand side expression and
bound to a λ-abstraction (and thus subject to α-renaming) in the right-hand side
expression.

3.2 Semantics

The reduction semantics for expressions is the one of call-by-value pure λ-calculus
with products and with a type-case expression, together with the context rules that
implement a leftmost outermost reduction strategy. It is formalized in Figure 3.1,
where⇝ is a reduction step for expressions and⇝Pr is a reduction step for programs.

Definition 16 (Capture-avoiding substitution). The capture-avoiding substitu-
tion (or just substitution) of e1 for x in e, noted ete1{xu, is defined inductively

30 Chapter 3. Core Language

on e as follows:

cte1{xu “ c

xte1{xu “ e1

yte1{xu “ y x ‰ y

pλx.eqte1{xu “ λx.e

pλy.eqte1{xu “ λy.pete1{xuq x ‰ y, y R fvpe1q

pe1e2qte
1{xu “ pe1te

1{xuqpe2te
1{xuq

pe1, e2qte
1{xu “ pe1te

1{xu, e2te
1{xuq

pπieqte
1{xu “ πipete

1{xuq

p(e1Pτ) ? e2 : e3qte1{xu “ (e1te
1{xuPτ) ? e2te

1{xu : e3te1{xu

Capture-avoiding substitutions are up to α-renaming: the condition y R fvpe1q
in the case of λ-abstractions can be ensured by first performing an α-renaming on
λy.e.

Reduction rules

pλx.eqv ⇝ etv{xu

π1pv1, v2q ⇝ v1
π2pv1, v2q ⇝ v2

(vPτ) ? e1 : e2 ⇝ e1 if v P τ
(vPτ) ? e1 : e2 ⇝ e2 if v P ␣τ
letx = v ; p ⇝Pr ptv{xu

Dynamic type test

v P τ ô typeofpvq ď τ , where

$

&

%

typeofpcq “ bc
typeofppv1, v2qq“ typeofpv1q ˆ typeofpv2q
typeofpλx.eq “ 0 Ñ 1

Evaluation Contexts

E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e
P ::“ r s | letx = r s ; p

e⇝ e1

Eres⇝ Ere1s

e⇝ e1

P res⇝Pr P re
1s

Figure 3.1: Semantics of the source language

The relation v P τ determines whether a value is of a given type or not and holds
true if and only if typeofpvq ď τ . Note that typeofpvq maps every λ-abstraction to
0 Ñ 1 and, thus, dynamic type tests do not depend on static type inference. This
approximation is allowed by the restriction on arrow types in the types used in
type-cases. For every value v, we cannot have both v P τ and v P ␣τ , thus the
reduction semantics is deterministic. Finally, the reduction semantics for programs

3.3. Challenges 31

sequentially reduces top-level definitions, together with a context rule that allows
reducing the expression of the first definition.

Given a reduction step relation⇝, we write e⇝˚ e1 when there exists a sequence
of ⇝ steps of any length from e to e1. Finally, we write e ⇝8 when there exists a
sequence of ⇝ steps starting from e and that can be prolonged indefinitely (in this
case, we also say that e diverges).

3.3 Challenges

The main specificities of our language are piq the presence of type-cases, piiq the fact
that λ-abstractions are not explicitly annotated with their type (which is quite un-
common for type systems using set-theoretic types), and piiiq the notion of programs
as a list of top-level let definitions.

The presence of type-cases has two consequences for the type system: first, if we
want them to be typed with precision, our type system should implement occurrence
typing, and secondly, it enables the expression of overloaded behaviors, which should
be captured by our type system.

The fact that λ-abstractions are not explicitly typed adds another challenge,
as it requires our type system to be able to infer the type of the parameters of
λ-abstractions. It also has significant consequences for the proof of type safety, as
it will be discussed in Chapter 4.

Finally, the notion of programs emphasizes the need for modularity: we want
our type system to be able to type later definitions without the need to re-type
previous definitions.

3.3.1 Occurrence typing

When statically typing the branches of a type-case, we may narrow the type of some
variables according to the result of the test. This is sometimes called occurrence
typing as different occurrences of the same variable may be typed differently.

For instance, for typing the expression (xPInt) ?x ` 1 : not x where x : Int _

Bool, ` : IntÑ IntÑ Int and not : BoolÑ Bool, the type of x must be narrowed
to Int in the first branch and to Bool in the second branch.

Occurrence typing becomes more subtle when the tested expression is more com-
plex, for instance, when it is an application. Consider the following type-case, in-
spired from the introductory example of Section 1.2: (ToBoolean x PTrue) ? e1 : e2
where x : 1 and ToBoolean : pTruthyÑ Trueq ^ pFalsyÑ Falseq. When typing e1,
we can assume that x has type Truthy: any value of x not in Truthy would have
made the application ToBoolean x to return a value in False, thus taking the second
branch. Likewise, we can assume that x has type Falsy when typing e2.

We want to go a step further by not only narrowing the type of variables,
but also the type of arbitrary expressions. For example, consider the expression
(fxPInt) ? pfxq ` 1 :x with x : 1 and f : 1 Ñ 1. This time, we cannot narrow
the type of x when typing the branches of the type-case: whatever type we give

32 Chapter 3. Core Language

to x, both branches can possibly be selected as the type of the application fx will
remain 1. However, we can narrow the type of the expression fx: we can assume it
has the type Int when typing the first branch, and the type ␣Int when typing the
second branch2.

Our type system must feature this capability to narrow the type of an expression
appearing in the branch of a type-case. This will be achieved, in the declarative
type system presented in Chapter 4, by adding a typing rule usually referred as
the union-elimination rule that allows decomposing the type of any expression into
several types and to treat each case separately.

3.3.2 Overloaded functions

Type-cases make it possible to define functions with an overloaded behavior. It is
the case of the λ-abstraction λx. (xPInt) ?x` 1 : not x, which performs a different
operation depending on the type of its argument: an addition if it is an integer, and
a logical not if it is a Boolean value.

Our type system must be able to capture this overloaded behavior. It does so
by using type intersections: the λ-asbtraction above can be typed pInt Ñ Intq ^

pBool Ñ Boolq. To derive such an intersection type, the declarative type system
(Chapter 4) needs to feature an intersection-introduction rule: if, for an expression
e (here, our λ-abstraction), we can derive a type t1 (here IntÑ Int) and a type t2
(here Bool Ñ Bool), then we can derive the type t1 ^ t2 (pInt Ñ Intq ^ pBool Ñ

Boolq).

3.3.3 Modularity

Modularity is essential for large-scale programming. For instance, when using a
library, the type-checker should only rely on the signature of functions and not
their implementation: imported functions, whose implementation may not even be
available, should not be re-typed. In our language, the need for modularity can be
illustrated with the notion of programs. Consider for instance the following program
excerpt:

letx =λx.x ; . . . ; let z = px 42, x 24q ; . . .

The top-level definition x, which corresponds to the identity function, is used in a
later definition z. This top-level definition z may be very distant from the definition
of x (we may consider for instance that x is defined in an external library, together
with many other functions). At the moment where the definition of x is typed, we
do not have access to the future uses that will be made of it. Consequently, even
if z could be typed precisely by giving x the type p42 Ñ 42q ^ p24 Ñ 24q, there is
no way to infer such a type for x as at this moment, it is not known that it will be
applied to 42 and 24.

2Our language is pure, so if the occurrence of fx in the test reduced to a value v, any other
occurrence of fx will reduce to the same value v.

3.3. Challenges 33

For this reason, our type system needs to feature parametric polymorphism. Giv-
ing the top-level definition x the polymorphic type α Ñ α enables the possibility
to instantiate it in different ways later: it will be instantiated with the substitu-
tion tα ⇝ 42u when typing the application x 42, and tα ⇝ 24u when typing the
application x 24.

3.3.4 Type inference

Languages using set-theoretic types usually have explicitly-typed λ-abstractions:
this is the case for instance of the initial CDuce type system (Frisch (2004)) and
its polymorphic extension (Castagna et al. (2014, 2015)). The λ-abstractions of our
language, however, are not explicitly typed, and thus their type must be inferred by
the type system (and not just checked).

From the perspective of the declarative type system, the types of the parameters
of λ-abstractions do not need to be annotated, they can simply be guessed. Still,
this implies significant changes in the proof of type safety. From an algorithmic
perspective, however, the types of the parameters must be inferred from the con-
text. This will be done in Chapter 6, with the formalization of an algorithm for
reconstructing some type annotations for the algorithmic type system.

A set-theoretic type system for a language where λ-abstractions are not explicitly
typed has already been formalized and implemented by Petrucciani (2019). However,
his work is different from ours on two aspects: piq though his language features type-
cases, those are typed naively (no occurrence typing), and piiq only single arrows
can be inferred for functions (no overloaded function types).

Part II

Core Formalization

Chapter 4

Declarative Type System

Contents
4.1 Formalization . 37

4.1.1 Polymorphic and monomorphic types 37
4.1.2 Type system . 39

4.2 Canonical typing derivations 43
4.2.1 Alternative form of the declarative type system 44
4.2.2 Normalization of typing derivations 48

4.3 Type safety . 63
4.3.1 The parallel semantics . 63
4.3.2 Elimination of instantiations and generalizations 65
4.3.3 Deriving negations of arrows 69
4.3.4 Subject reduction . 73
4.3.5 Progress . 80
4.3.6 Type safety for the source semantics 83

Section 4.1 formalizes a declarative type system for the core language defined
in the previous chapter. Despite its apparent simplicity, this type system is quite
expressive, featuring parametric polymorphism, occurrence typing (through a union-
elimination rule) and ad hoc polymorphism (through an intersection-introduction
rule). Derivations for this type system can take very different shapes, but we can
restrict the way to combine them without losing expressivity (these restrictions
should not affect which judgments are derivable): this is done in Section 4.2, where
we introduce the notion of canonical derivation. Finally, Section 4.3 focuses on
proving a type safety theorem for this type system.

4.1 Formalization

4.1.1 Polymorphic and monomorphic types

The set-theoretic types presented in Chapter 2 do not differentiate polymorphic type
variables (i.e., those that can be instantiated) and monomorphic ones (i.e., those
that cannot be instantiated). However, this distinction now becomes important, as
our type system must feature parametric polymorphism and, thus, is in charge of
performing instantiations.

38 Chapter 4. Declarative Type System

The classical algorithm of Hindley-Milner infers for a closed expression (i.e.,
an expression with no free variable) a type scheme @α⃗.t (with α⃗ Ď varsptq). This
type scheme is a syntactic object that denotes an infinite set of types tϕ for all
type substitutions ϕ such that dompϕq Ď α⃗. The algorithm is allowed to specialize
(instantiate) the type of an expression to make the typing succeed. For instance,
if f : @α.α Ñ α, then f 42 is well typed and has type Int since 42 : Int and
pα Ñ αqtα ⇝ Intu “ Int Ñ Int. Notice however that during type inference,
“partially generalized” types such as @α. β Ñ α may occur. In such a type scheme,
it is not allowed to substitute β by an arbitrary type.

In this manuscript, we will use another approach, by partitioning the count-
ably infinite set V of type variables into two countably infinite sets: the set VP of
polymorphic type variables and the set VM of monomorphic type variables.

Notation.
V .Set of type variables (V “ VP Y VM)
VPSet of polymorphic type variables, ranged over by α, β, or γ
VM Set of monomorphic type variables, ranged over by α, β, or γ

Note that, from this point, α no longer ranges over V, but only over VP . As we
will see in the next section, a polymorphic type variable α can be freely substituted
by the type system, while a monomorphic type variable α (with bold font) cannot.

Definition 17 (Monomorphic types). The set of monomorphic types TM is the
set of types that do not contain polymorphic type variables, that is:

TM “
def
tt P T | varsptq Ď VMu

As before, the metavariables t and s are used to range over the set of types. When
ranging over the set of monomorphic types specifically, we use the metavariables u
and v.

Note that the terms polytypes and monotypes can be found (albeit inconsistently)
in the literature: in particular, Milner (1978) uses the latter to denote types with
no type variables and the former when he wishes to imply that a type may, or
does, contain a variable. We avoided using them to prevent any confusion with our
monomorphic types we defined just above. While our types are indeed polytypes, our
monomorphic types are not monotypes: monotypes do not have type variables while
monomorphic types may have type variables, though only monomorphic ones. So
we used instead types (which may have type variables), ground types (which cannot
have any type variable), and monomorphic types (which may have monomorphic
type variables, only).

For what concerns subtyping and type operators, there is no difference between
monomorphic and polymorphic type variables: both α and α are type variables in

4.1. Formalization 39

V and thus have the same interpretation in the set-theoretic type theory presented
in Chapter 2. They thus play the same role for subtyping and in every type opera-
tor defined in Chapter 2: for instance, varsptq can contain both monomorphic and
polymorphic type variables.

Our choice of using two disjoint sets for polymorphic and monomorphic type
variables, instead of the classical approach of using type schemes @α1...αn.t, is jus-
tified by two reasons. First, type schemes are expected to be equivalent modulo
renaming of their bounded type variables α1, . . . , αn. In our case however, we do
not want polymorphic type variables to be freely renamed because of the use, in
the algorithmic type system of Chapter 5, of external annotations containing ex-
plicit substitutions over some polymorphic type variables of the context. Secondly,
introducing type schemes would require redefining many of the usual set-theoretic
type-related definitions, such as the subtyping relation ď, and the type operators for
application ˝ and projections πi. Instead, we obtain a more streamlined theory by
making subtyping and these operators ignore whether a type variable is polymorphic
or monomorphic in the current context and by explicitly performing instantiations
in the type system when required.

With this new distinction between monomorphic and polymorphic type vari-
ables, we introduce different symbols for ranging over substitutions.

Notation.

ϕ P V Ñ T General substitution, from type variables to types
ψ P VM Ñ TM Substitution from monomorphic variables to monomorphic types
σ P VP Ñ T Substitution from polymorphic type variables to types
ρ P VP Ñ VP Renaming (injective substitution) of polymorphic type variables

Moreover, we use Φ, Ψ and Σ respectively to range over sets of substitutions
V Ñ T , sets of substitutions VM Ñ TM and sets of substitutions VP Ñ T .

4.1.2 Type system

The core of our type system is a classic Hindley-Milner system with first order poly-
morphism: a program is a list of let-bindings that define polymorphic functions;
these are typed by inferring a type for the expressions that define them, this type is
then generalized, yielding a prenex polymorphic type for the function. As usual, the
deduction of the type of each of these expressions is performed in a type environment
that records the generic types for the previously-defined polymorphic functions, and
the type system can instantiate these types differently for each use of the polymor-
phic functions in the expression. The novelty of our system is that when deducing
the types of the expressions that define and use polymorphic functions, the type sys-
tem can use not only instantiations of polymorphic types (rule [Inst] in Figure 4.1),
but also intersection and union types. More precisely, the type system can decide
to use the classic rules of intersection-introduction (rule [^]) and union-elimination

40 Chapter 4. Declarative Type System

[Const]
Γ $ c : bc

[Var]
Γ $ x : Γpxq

[ÑI]
Γ, x : u $ e : t

Γ $ λx.e : uÑ t
[ÑE]

Γ $ e1 : t1 Ñ t2 Γ $ e2 : t1

Γ $ e1e2 : t2

[ˆI]
Γ $ e1 : t1 Γ $ e2 : t2

Γ $ pe1, e2q : t1 ˆ t2
[ˆE1]

Γ $ e : t1 ˆ t2

Γ $ π1e : t1
[ˆE2]

Γ $ e : t1 ˆ t2

Γ $ π2e : t2

[0]
Γ $ e : 0

Γ $ (ePτ) ? e1 : e2 : 0
[P1]

Γ $ e : τ Γ $ e1 : t1

Γ $ (ePτ) ? e1 : e2 : t1
[P2]

Γ $ e : ␣τ Γ $ e2 : t2

Γ $ (ePτ) ? e1 : e2 : t2

[_]
Γ $ e1 : s Γ, x : s^ u $ e : t Γ, x : s^␣u $ e : t

Γ $ ete1{xu : t

[^]
Γ $ e : t1 Γ $ e : t2

Γ $ e : t1 ^ t2
[Inst]

Γ $ e : t

Γ $ e : tσ
[ď]

Γ $ e : t

Γ $ e : t1
t ď t1

Figure 4.1: Declarative Type System

(rule [_]). As we will see, the combination of the union-elimination with the rules of
type-cases given in Figure 4.1 constitutes the essence of narrowing and occurrence
typing.

Definition 18 (Type environment). A type environment Γ is a finite mapping
from Vars to T . We note pΓ, x : tq the extension of Γ that maps x to t, with the
condition that x is not already in the domain of Γ.

Notation.
dompΓq .Domain of Γ: dompΓq “def

tx | px : tq P Γu

varspΓq . “def Ť

xPdompΓq varspΓpxqq
ϕ#Γ . ô dompϕq X varspΓq “ ∅
Γ

ˇ

ˇ

S
. Restriction of Γ to the domain S

Γϕ . “
def
tpx : tϕq | px : tq P Γu

ΓΦ . “def
tpx : tΦq | px : tq P Γu

Our type system for expressions is given in full in Figure 4.1. Constants and
variables are typed by the corresponding axioms [Const] and [Var]. The arrow
and product constructor have introduction and elimination rules. Notably, in the
case of rule [ÑI] the type of the argument is monomorphic. Also, the variable x
must not already be in dompΓq in order for Γ, x : u to be defined, but α-renaming
can be applied implicitly on expressions whenever needed. The rules for intersection

4.1. Formalization 41

([^]) and subtyping ([ď]) are the classical ones, and so is the rule for instantiation
([Inst]) where σ denotes a substitution from polymorphic variables to types. The
type-case construction is handled by three rules: [0]; [P1]; [P2] . Rule [0] handles
the case where the tested expression is known to have the empty type. The other
two are symmetric and handle the case when the tested expression is known to have
either the type τ or its negation, in which case the corresponding branch is typed.
These rules work together with Rule [_], which we now describe in detail.

At first sight, the formulation of rule [_] seems odd, since the _ connector
does not appear in it. To understand it, consider the classic union-elimination rule
by MacQueen et al. (1986):

[_E]
Γ $ e1 : s1_s2 Γ, x : s1 $ e : t Γ, x : s2 $ e : t

Γ $ ete1{xu : t

Rule [_E] types an expression that contains occurrences of an expression e1 that
has a union type s1 _ s2; the rule substitutes in this expression some occurrences
of e1 by the variable x yielding an expression e, and then types e first under the
hypothesis that x has type s1 and then under the hypothesis that x has type s2. If
both succeed, then the common type is returned for the expression at issue. This
rule, together with the rules for type-cases, allows the system to perform occurrence
typing. For instance, consider the expression (fyPInt) ? pfyq ` 1 : false, in the
context where f has type 1 Ñ 1 and y is of type 1. This expression can be typed
thanks to the [_E] rule, by considering the subexpression fy. This subexpression
has type 1 which can be seen as the union type 1 » Int_␣Int. We can then replace
x for fy and type, using [P1], the expression (xPInt) ?x ` 1 : false, with x : Int.
This yields a type Int (Rule [P1] ignores the second branch) and by subtyping, the
expression has type Int_False. Likewise for the choice x : ␣Int, using Rule [P2]
the second branch has type False and therefore Int_False (again via subtyping).
The whole expression has thus the desired type Int_False.

A key element is that the [_E] rule guessed how to split the type 1 of fy into
Int _ ␣Int. In a non-polymorphic setting, this is perfectly fine. But in a type
system featuring polymorphism, particular care must be taken when introducing
(fresh) type variables. As it is stated, Rule [_E] could choose to split, say, 1
into a union α _ ␣α, with α a polymorphic type variable. If so, then the rule
becomes unsound. As a matter of fact, the premises of the [_E] behave as in
rule [ÑI], in that they introduce in the typing environment a fresh type whose
variables must not be instantiated. In our example, however, in one premise, the rule
introduces x : α in the typing environment which can, for instance, be instantiated
by the [Inst] rule. In the second premise, it introduces x : ␣α which can also be
instantiated in a completely different way. In other words, the correlation between
the two occurrences of the same variable α is lost, which amounts to commuting the
(implicit) universal quantification with the _ type connective, yielding a non-prenex
polymorphic type p@α.αq _ p@α.␣αq. To avoid this unsound situation, we need to
ensure that when a type is split between two components of a union, no polymorphic

42 Chapter 4. Declarative Type System

variable is introduced. This is achieved by the [_] rule which requires the type s of
e1 to be split as s ” ps^ uq _ ps^␣uq (here is our hidden union).

Finally, note that this [_] rule is only sound because our language is pure. In
the presence of side effects, two different occurrences of the same subexpression
could yield two different results. The support for side effects is not treated in this
manuscript: it is a future work that will be briefly discussed in Chapter 10.

The top-level definitions of a program are typed sequentially by two specific
rules:

[TopLevel-Expr]
Γ $ e : t

Γ $Pr e : tϕ
ϕ#Γ [TopLevel-Let]

Γ $Pr e : t Γ, x : t $Pr p : t
1

Γ $Pr letx = e ; p : t1

where, intuitively, ϕ substitutes monomorphic type variables in varsptq by fresh
polymorphic ones. The typing rule [TopLevel-Expr] generalizes the type t of
expression e, converting its monomorphic type variables into polymorphic ones.
Intuitively, this corresponds to the [Gen] rule of Hindley-Milner type systems, except
it is only applicable on top-level definitions. The generalized type t is integrated
in the environment by the [TopLevel-Let] rule, which then proceeds to type the
rest of the program.

Note that the substitution ϕ in [TopLevel-Expr] can be any substitution: it
is not required for it to map monomorphic type variables to fresh polymorphic ones.
It can map any type variable (monomorphic or polymorphic) to an arbitrary type,
as long as the guard condition ϕ#Γ is satisfied. In a Hindley-Milner system, this
would amount to successively apply a generalization and an instantiation:

Γ $ e : t

Γ $Pr e : tϕ
ϕ#Γ Ø [Inst-HM]

[Gen-HM]
Γ $HM e : t

Γ $HM e : @α⃗.t
α⃗#Γ

Γ $HM e : tϕ
p@α⃗.tq Ď tϕ

where t1 Ď t2 means that t1 is more general than t2, that is, t1 can be transformed
into t2 by substituting universally-quantified type variables.

Note that, in our type system, generalization only takes place in “TopLevel”
rules: no rule in the type system for expressions (Figure 4.1) allows the generalization
of a type variable. However, restricting generalization to occur only at top-level
is not a limitation since intersection types are more powerful than Hindley-Milner
polymorphism. For instance, let us consider a local definition of the identity function
λx.x, and assume that it is given a generalized type αÑ α. This polymorphic type
allows the identity function to be instantiated later. However, since it is a local
definition, all these instantiations are known. Thus, we can consider the set of
substitutions tσiuiPI applied to this identity function, where each σi is of the form
tα⇝ tiu. These instantiations can then be eliminated from the derivation by typing
the identity function with the type

Ź

iPIpti Ñ tiq using an intersection rule. This
type being a subtype of every instantiation pα Ñ αqσi, instantiations can thus be
replaced by a subsumption rule.

Still, as discussed in Chapter 3 (Section 3.1), generalization is of practical im-
portance since it is necessary to the modularity of type-checking. However, for

4.2. Canonical typing derivations 43

this purpose, it is enough to generalize at top-level. The reason why we restrict
generalization at top-level will be explained in Section 4.2.

Our type system is safe: if ∅ $Pr p : τ , then either p diverges or p ⇝Pr v with
v P τ . This will be proved in Section 4.3.

4.2 Canonical typing derivations

Derivations for the declarative type system can have many shapes. In particular, the
union-elimination rule [_] can be used anywhere in the derivation and changes the
expression to type by performing a substitution on it. Other non-structural rules
such as [^], [ď] and [Inst] can also be applied anywhere in the derivation (note
that we cannot even say that the rule [^] is driven by the syntax of the output type,
since our types are considered modulo semantic equivalence). In this section, we
define canonical derivations that restrict the use of those rules. In addition to being
a first step towards an algorithmic type system, some of these restrictions will be
used in Section 4.3, whose goal is to establish a type safety theorem.

Terminology (Derivation trees). For a derivation tree D, we use the following
terminology:

Node A node in D corresponds to an application of a typing rule in D.

Conclusion The conclusion of a node N is the judgment it derives.

Premise An hypothesis of a node N is called a premise of N .

Path A path π is a sequence of non-negative natural numbers n1;n2; ...;nk that
describes the position of a node relatively to the root of D. For instance, the
path 0; 1 denotes the second premise of the first premise of the root of D.
The empty path is noted ε. The node in D at path π is denoted by Dpπq.
The set of valid paths in D is denoted by dompDq.

Segment A segment of D denotes a sequence of nodes of D such that the node
at position i` 1 is a premise of the node at position i.

Definition premise Given a [_] node N of D, the definition premise of N
denotes the first premise of N .

Body premise Given a [_] node N of D, a body premise of N is a premise of
N that is not its first premise.

Notation.
|D| . Number of nodes in the derivation tree D
|D|rRs .Number of [R] nodes in the derivation tree D
pO1, ...,Onqlex Lexicographic order based on orders O1, ..., On

44 Chapter 4. Declarative Type System

4.2.1 Alternative form of the declarative type system

To define our canonical typing derivations, we first need to slightly modify some
rules of the declarative type system. In order to avoid confusions, this modified
declarative type system will produce judgments of the form Γ $: e : t (notice the $:
turnstile).

Definition 19 (Partition of a type). Let t be a type. The set of partitions
of t, noted Partptq, is the set of all sets ttiuiPI such that: piq

Ž

iPI ti » t, piiq
@i P I. ti fi 0, and piiiq @i, j P I. i ‰ j ñ ti ^ tj » 0.

First, we modify the [Var] rule so that it can perform a renaming of the poly-
morphic type variables in Γpxq:

[Var]
Γ $: x : Γpxqρ

This new [Var] rule is derivable in the initial declarative type system by com-
posing a [Var] rule and an [Inst] rule. Still, allowing the [Var] rule to perform
a renaming of polymorphic type variables is useful, as it allows decorrelating types
without resorting to the [Inst] rule. For instance, consider the pair px, xq with x

having the type α Ñ α. While this pair could be typed pα Ñ αq ˆ pα Ñ αq, this
type does not allow instantiating the left-hand side and right-hand side of the prod-
uct independently. A better type would be pα Ñ αq ˆ pβ Ñ βq, and with this new
[Var] rule, it can be derived without having to use an [Inst] rule. In this way, the
[Inst] rule can be reserved to cases that require non-trivial instantiations (i.e., not
just renamings). Note that the necessity of performing this renaming comes from
the fact that we do not use type schemes @α⃗. t, where renaming of the type variables
in α⃗ can be performed implicitly anywhere.

Secondly, we use a [^] rule of multiple arity instead of a binary one:

[^]
p@i P Iq Γ $: e : ti

Γ $: e :
Ź

iPI ti
I ‰ ∅

This allows combining successive [^] rule applications into one [^] rule, making
the notion of canonical derivation easier to formulate. This new [^] rule is admissible
in the $ system: it can be replaced by several consecutive [^] nodes.

Similarly, we use a [_] rule of multiple arity:

[_]
Γ $: e1 : s p@i P Iq Γ, x : s^ ui $: e : t

Γ $: ete1{xu : t
tuiuiPI P Partp1q

This allows combining successive [_] rule applications substituting the same
subexpression into one [_] rule, making the notion of canonical derivation easier

4.2. Canonical typing derivations 45

to formulate. Again, this new [_] rule is admissible. For instance, the following
derivation:

[_]

A

Γ $: e1 : s

B

Γ, y : s^ u1 $: e : t

C

Γ, y : s^ u2 $: e : t

D

Γ, y : s^ u3 $: e : t

Γ $: ete1{xu : t

can be transformed to apply the binary [_] rule twice, first performing the decom-
position tu1,␣u1u, and then performing the decomposition tu2,␣u2u (since u3 is
equivalent to ␣u1 ^␣u2):

[_]

A

Γ $: e1 : s

B

Γ, x : s^ u1 $: e : t

X

Γ, x : s^␣u1 $: e : t

Γ $: ete1{xu : t

with X being the following derivation:

[_]
rVars

Cty{xu

Γ, x : s^␣u1, y : s^ u2 $: ety{xu : t

Dty{xu

Γ, x : s^␣u1, y : s^ u3 $: ety{xu : t

Γ, x : s^␣u1 $: pety{xuqtx{yu : t

This construction can be generalized for a partition of 1 of any finite cardinality.
Lastly, we distinguish variables that are introduced by a [ÑI] node from variables

introduced by a [_] node:

Terminology.

Lambda variable A lambda variable is a variable introduced by a λ-abstraction.
The set of lambda variables is denoted by Varsλ, and ranged over by x, y,
and z.

Binding variable A binding variable is a variable introduced by a [_] rule. The
set of binding variables is denoted by VarsB, and ranged over by x, y, and z.

Variable When not specified, a variable can be either a binding variable or a
lambda variable. The set of variables is denoted by Vars, and ranged over
by x, y, and z.

The sets Varsλ and VarsB form a partition of the set of variables Vars. Notice
that from this point, the symbol x no longer ranges over Vars, but only over Varsλ.
When needed, we use the notation x to range over both binding variables and
lambda variables (for instance we can write @x P dompΓq. Γpxq fi 0).

The syntax of expressions and the rules of the type system are changed accord-
ingly, as defined in Figure 4.2 which presents the full alternative declarative type
system. This new system is equivalent to the initial type system: the combination
of both [Varλ] and [Var_] gives the previous [Var] rule.

46 Chapter 4. Declarative Type System

Expression e ::“ c | x | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e
Value v ::“ c | λx.e | pv, vq

[Const]
Γ $: c : bc

[Varλ]
Γ $: x : Γpxqρ

[Var_]
Γ $: x : Γpxqρ

[ÑI]
Γ, x : u $: e : t

Γ $: λx.e : uÑ t
[ÑE]

Γ $: e1 : t1 Ñ t2 Γ $: e2 : t1

Γ $: e1e2 : t2

[ˆI]
Γ $: e1 : t1 Γ $: e2 : t2

Γ $: pe1, e2q : t1 ˆ t2
[ˆE1]

Γ $: e : t1 ˆ t2

Γ $: π1e : t1
[ˆE2]

Γ $: e : t1 ˆ t2

Γ $: π2e : t2

[0]
Γ $: e : 0

Γ $: (ePτ) ? e1 : e2 : 0
[P1]

Γ $: e : τ Γ $: e1 : t1

Γ $: (ePτ) ? e1 : e2 : t1
[P2]

Γ $: e : ␣τ Γ $: e2 : t2

Γ $: (ePτ) ? e1 : e2 : t2

[_]
Γ $: e1 : s p@i P Iq Γ, x : s^ ui $: e : t

Γ $: ete1{xu : t
tuiuiPI P Partp1q

[^]
p@i P Iq Γ $: e : ti

Γ $: e :
Ź

iPI ti
I ‰ ∅ [Inst]

Γ $: e : t

Γ $: e : tσ
[ď]

Γ $: e : t

Γ $: e : t1
t ď t1

Figure 4.2: Alternative Declarative Type System

Terminology.

Structural rules [Const] [Varλ] [ÑI] [ÑE] [ˆI] [ˆE1] [ˆE2] [0] [P1] [P2]

Non-structural rules [Var_] [_] [^] [Inst] [ď]

The rules [Const], [Varλ], [ÑI], [ÑE], [ˆI], [ˆE1], [ˆE2], [0], [P1] and [P2] are
called structural rules as their use is guided by the structure of the expression to
type, each of them allowing to type a specific syntactic construction. In particular,
note that the rule [Var_] is not considered structural as binding variables do not
appear in the initial expression: they are only introduced in the derivation by [_]
rules.

Definition 20 (Ground expression). An expression e is a ground expression if
and only if e does not contain any binding variable: fvpeq X VarsB “ ∅.

All the proofs in the next sections and chapters will use the $: declarative type
system, which is equivalent to the $ type system:

4.2. Canonical typing derivations 47

Proposition 3. For every ground expression e, type environment Γ and type t:

Γ $ e : tô Γ $: e : t

Proof. Both directions are proved by structural induction on the derivation. The
ñ direction is trivial. The ð direction follows from the rules’ admissibility out-
lined at the beginning of this section.

We introduce a new binary relation Ÿ over types. Intuitively, t1Ÿ t2 means that
the type t1 is better than the type t2. More precisely, it means that there exists
instances of t1 whose conjunction is a subtype of t2. Another way to characterize
the relation Ÿ is by saying that t1Ÿ t2 if and only if, for every Γ and e, a derivation
of Γ $: e : t1 can be transformed into a derivation of Γ $: e : t2 by applying some
[Inst], [^] and [ď] rules.

Definition 21. We define the binary relation Ÿ over types as follows:

@t1, t2. t1 Ÿ t2 ô DΣ. t1Σ ď t2

Proposition 4. The relation Ÿ is a preorder (i.e., it is reflexive and transitive).

Proof. Reflexivity is trivial. Transitivity is proved below.
Let t1, t2, and t3 be three types such that t1 Ÿ t2 and t2 Ÿ t3. Let Σ1 and

Σ2 be two sets of substitutions such that t1Σ1 ď t2 and t2Σ2 ď t3. By pos-
ing Σ “ tσ2 ˝ σ1 | σ1 P Σ1, σ2 P Σ2u, we get t1Σ ď

Ź

σ1PΣ1,σ2PΣ2
pt1σ1qσ2 ď

Ź

σ2PΣ2
p
Ź

σ1PΣ1
t1σ1qσ2 ď pt1Σ1qΣ2 ď t3. Thus, t1 Ÿ t3.

Definition 22. For every preorder O over types, we define the preorder O over
type environments as follows:

@Γ1,Γ2. pΓ1qOpΓ2q ô @x P dompΓ2q. x P dompΓ1q and pΓ1pxqqOpΓ2pxqq

For convenience, we introduce a new rule [Ÿ] that can perform those instantia-
tions and subsumptions all at once:

Notation.

48 Chapter 4. Declarative Type System

The typing rule [Ÿ] is a shorthand for this specific pattern in a derivation tree:

[Ÿ]

A

Γ $: e : t

Γ $: e : t1
tŸ t1

(with Σ such that tΣ ď t1)

Ù

[ď]

[^]
p@σ P Σq

[Inst]

A

Γ $: e : t

Γ $: e : tσ

Γ $: e : tΣ

Γ $: e : t1
tΣ ď t1

Lemma 1 (Monotonicity). Let Γ be an environment, e an expression, and t a
type such that Γ $: e : t is derivable. Let Γ1 be an environment such that Γ1 Ÿ Γ.
Then, Γ1 $: e : t is derivable.

Proof. We consider a derivation D of Γ $: e : t and show that we can build
a derivation D1 of Γ1 $: e : t. We show this result by structural induction on
the proof tree D. When the root is a [Var_] or [Varλ] node, we conclude by
applying [Ÿ]. All the other cases are just straightforward applications of the
induction hypothesis.

4.2.2 Normalization of typing derivations

Derivations for the declarative type system of Figure 4.2 can still take very different
shapes. In this section, we define three notions of canonical derivation, each restrict-
ing the use of a non-structural rule: one for the [_] rule, one for the [Inst] rule, one
for the [ď] rule, and one for the [^] rule. Each time, we prove a lemma that shows
how every typing derivation can be normalized into a canonical derivation.

4.2.2.1 Normalization of [_] nodes

Our objective is to constrain the shape of derivations without losing expressivity,
that is, such that a judgment is derivable in the full system if and only if it is
derivable by a derivation in the constrained shape. In particular, in this section, we
are focusing on restricting the use of the [_] rule. In order to do so, we first prove
two lemmas that allow manipulating [_] nodes in a derivation.

Lemma 2 allows us to remove from a derivation D all the [_] nodes that perform
aliasing, that is, the [_] nodes that apply a substitution of the form ty{xu. The idea

4.2. Canonical typing derivations 49

is that the introduction of this new variable y is useless, as it is just an alias for
x: the type decomposition performed on the variable y can instead be performed
directly on x.

This lemma is then used in Lemma 3, which gives us the ability to insert a
[_] node performing an arbitrary substitution te1{xu at the root of a derivation D,
provided that e1 is typeable and that there is no strict subexpression in e1 that is
the object of another [_] node in D. The resulting derivation is guaranteed not to
contain [_] nodes performing aliasing on x. This manipulation will allow us to order
[_] nodes arbitrarily while getting rid of aliasing: this is the point of Lemma 4.

Definition 23. Let D be a derivation, and N be a [_] node of D. We say that
N performs aliasing for x if it applies a substitution of the form tx{yu for some
binding variables y.

Definition 24 (Aliasing-free derivation). Let D be a derivation. We say that D
is x-aliasing-free if and only if D does not contain any [_] node that performs
aliasing for x.

Lemma 2 (Elimination of aliasing). Let Γ be a type environment, e an expression,
and t a type. Let x be a binding variable in fvpeq. Let D be a derivation of
Γ, x : s $: e : t. Then, there exists a partition tuiuiPI of 1 such that for every
i P I, there exists a x-aliasing-free derivation of Γ, x : s^ ui $: e : t.

Proof. We proceed by induction on p|D|r_s, |D|q for the lexicographic order.

• If the root is an axiom ([Varλ], [Var_], [Const]), the property holds for the
trivial partition t1u.

• If the root is a [^] node deriving an intersection
Ź

iPI ti, then we apply the in-
duction hypothesis on all its premises. It yields a set of partitions ttujujPJiuiPI

of 1 and the associated x-aliasing-free derivations ttDjujPJiuiPI . We consider
a partition tvkukPK of 1 that satisfies this property: @k P K. @i P I. @j P
Ji. vk ď uj or vk ^ uj » 0 (such a partition can easily be built by induction
on |tuj | i P I, j P Jiu|).

For each k P K and i P I, there exists j P Ji such that vk ď uj , and thus we can
derive Γ, x : s^vk $: e : ti from Dj by monotonicity (Lemma 1). Consequently,
for each k P K, we can build a x-aliasing-free derivation of Γ, x : s ^ vk $: e :
Ź

iPI ti using a [^] node, which conclude this case.

• If the root is a [_] node that does not perform aliasing for x, then we proceed
similarly to the previous case.

50 Chapter 4. Declarative Type System

• If the root is a [_] node that performs a substitution ty{xu for some y, and that
uses a partition tuiuiPI , we have the following premises:

Definition premise Γ, x : s $: x : s1 (with s ď s1)

Body premises @i P I. Γ, x : s, y : s1 ^ ui $: e : t

We build, for each i P I, a derivation Γ, x : s^ui $: e
1 : t where e1 ” etx{yu. We

do that by applying the monotonicity lemma (Lemma 1) on the body premise
Γ, x : s, y : s1 ^ ui $: e : t, yielding Γ, x : s ^ ui, y : s ^ ui $: e : t, and then by
substituting every occurrence of y by x in the derivation.

For each i P I, we apply the induction hypothesis on our derivation Γ, x :

s^ui $: e
1 : t. Each time, it yields a partition tvjuJPJi of 1, and the associated

x-aliasing-free derivations. We consider the following partition of 1:

tv1kukPK “
def
tvj ^ ui | i P I, j P Ji,vj ^ ui fi 0u

For each k P K, we thus have a x-asliasing-free derivation Γ, x : s^ v1k $: e
1 : t,

which concludes this case.

• The other cases are similar to the [^] case.

An interesting observation is that the proof above would not work if the declar-
ative type system for expressions featured a generalization rule such as:

[Gen]
Γ $: e : t

Γ $: e : tϕ
ϕ#Γ

Indeed, the guard condition ϕ#Γ would invalidate the monotonicity lemma, as
having a new hypothesis in the environment could invalidate the application of a
[Gen] rule. More precisely, in the [_] case of the proof of Lemma 2, if the partition
tuiuiPI introduces a new monomorphic type variable, then the application of the
monotonicity lemma to derive Γ, x : s ^ ui, y : s ^ ui $: e : t is compromised.
This would be a major issue, as our normalization process (Lemma 4) and the
algorithmic type system we define in Chapter 5 both rely on the property that the
union-elimination rule only needs to be applied once on every subexpression (i.e.,
[_] nodes performing aliasing are redundant and can be avoided). This is the reason
why we decided to restrict the use of the generalization rule on top-level definitions
only.

Lemma 3 (Introduction of an arbitrary [_] node). Let Γ be a type environment,
x a binding variable, e, ex two expressions, and t a type. Let D be a derivation
of Γ $: etex{xu : t such that D does not contain any [_] node performing a
substitution tey{yu for some y and ey where ey is a strict subexpression of ex.
If Γ $: ex : 1 is derivable, then there exists some type s and partition tuiuiPI

4.2. Canonical typing derivations 51

of 1 such that Γ $: etex{xu : t is derivable by a derivation whose root is a [_]
node of the following form, whose definition premise starts with an intersection
of structural and/or [Var_] nodes, and whose body premises are x-aliasing-free:

[_]

. . .

Γ $: ex : s

. . .

Γ, x : s^ ui $: e : t
@i P I

Γ $: etex{xu : t

Proof. Let C be a derivation of Γ $: ex : 1. We collect in D and C the set tCkukPK

of all the subderivations of the form Γ1 $: ex : t
1, for some Γ1 and t1, and whose root

is either a structural rule or a [Var_] rule (if ex is a binding variable). We have
the guarantee that k ‰ ∅ as C contains at least one such derivation. We know
that, for every k P K, the derivation tCkukPK is still valid under the environment
Γ: no variable in fvpexq can be introduced by a [ÑI] node in the segment from
the root to of D to the root of Ck (the substitution etex{xu is capture-avoiding)
nor by a [_] node (the binding variable introduced by a [_] node cannot appear
in the final expression). For each k P K, we note sk the types derived by the
derivations Ck. We pose s “

Ź

kPK sk.
Then, we build a derivation D1 of Γ, x : s $: e : t by substituting in D every

occurrence of ex by x, and by using [Var_] and [ď] rules to type occurrences of
x in place of the subderivations tCkukPK . Note that this is only possible thanks
to the fact that no [_] node in D performs a substitution tey{yu with ey a strict
subexpression of ex: this ensures that this transformation does not prevent a [_]
node to apply.

Then, we apply Lemma 2 to D1, yielding a partition tuiuiPI and, for every
i P I, a x-aliasing-free derivation D2i of Γ, x : s^ ui $: e : t.

Now, we build the following derivation, which concludes this proof:

[_]

[^]

Ck

Γ $: ex : sk
@k P K

Γ $: ex : s

D2
i

Γ, x : s^ ui $: e : t
@i P I

Γ $: etex{xu : t

We are now ready to define a notion of canonical derivation that restricts the
use of the [_] rule, and to prove a normalization lemma stating that, if a judgment
is derivable in the full system, then it is derivable by such a canonical derivation.

Definition 25 (Acceptable [_] node). In any derivation, a [_] node N per-
forming the substitution ete1{xu is said acceptable if it satisfies the following
constraints:

• e contains x (no useless substitution), and

52 Chapter 4. Declarative Type System

• e does not contain e1 (maximal sharing)

Definition 26 (Definition context). A definition context ∆ is an ordered list of
mappings from binding variables to expressions. Each mapping is written as a pair
px, eq. We note these lists extensionally by separating elements by a semicolon,
that is, px1, e1q; . . . ; pxn, enq and use ε to denote the empty list.

Definition 27 (Application of definition context to an expression). The appli-
cation of a definition context ∆ to an expression e, noted e∆, is the expression
inductively defined as follows:

eε “ e

ep∆; px, e1qq “ pete1{xuq∆

Note that the last mapping in ∆ is the first to be applied to e (intuitively, we
can interpret ∆ as a sequence of let-definitions preceding the body e).

Definition 28 (Application of a definition context to an expression order). Let
Ď be an expression order. Let ∆ be a definition context. The relation Ď∆ is the
expression order defined by e1 Ď∆ e2 ô e1∆ Ď e2∆.

Definition 29 (Definition context of a node). Let D be a derivation of a judgment
Γ $: e : t. Let N be a node at path π in D. Let π1, . . . , πn be the sequence of all
prefixes of π, ordered by increasing length, that satisfy the following conditions:
for a prefix π1 of π,
piq Dpπ1q is a [_] node, and
piiq π1 is followed in π by a natural number k ě 1.

We call definition context of N in D the definition context
px1, e1q; . . . ; pxn, enq, where te1{x1u, . . . , ten{xnu are the successive substitu-
tions made by the nodes Dpπ1q, . . . , Dpπnq.

Intuitively, the definition context of a node N is the sequence of substitutions
performed by the [_] nodes in the path from the root to N . For instance, consider
the following derivation:

[_]

[_]

[Varλ]
x : t $: x : t

[Var_]
x : t, z : t $: z : t

x : t $: ztx{zu : t
[Var_]

x : t, y : t $: y : t

x : t $: ytpztx{zuq{yu : t

4.2. Canonical typing derivations 53

The definition context of the [Var_] node in red (the middle leaf) is pz, xq: in
particular, we do not consider the substitution made by the [_] node at the root
because this substitution only applies to the expression of the second premise, while
our [Var_] node is under the first premise.

In our definition of canonical derivations, we want to capture the fact that piq the
type of a subexpression only needs to be decomposed once (i.e., in any branch of our
derivation, we only need one [_] rule application per distinct subexpression), and
piiq the order of these different applications of the [_] rule does not matter: when
building a typing derivation for an expression e that contains two subexpressions e1
and e2 that are incomparable for the subterm order Ďα, we can arbitrarily decide
whether we first decompose the type of e1 or the type of e2.

In order to guarantee this second point, some definitions and lemmas that follow
are parametrized by an arbitrary order over expressions. This expression order must
satisfy the following properties:

Definition 30 (Expression order). A (possibly partial) order Ď over expressions
is an expression order if it is compatible with α-equivalence and if it contains the
subterm order Ďα.

Definition 31 (Well-positioned [_] node). Let D be a derivation of a judgment
Γ $: e : t. Let N be a [_] node of D performing the substitution te1{xu. Let ∆

be the definition context of N in D. N is well-positioned in pD,Ďq if for every
node N 1 in the segment from the root (included) to N (excluded), either:

• There exists x P fvpe1∆q such that x R dompΓq, with Γ being the type
environment of the conclusion of N 1, or

• N 1 is a [_] rule of definition context ∆1 and performing a substitution te2{yu
such that e1∆ Ď e2∆

1.

Intuitively, a [_] node that decomposes the type of the subexpression e1 is well-
positioned if and only if it happens as early as possible in the derivation (that is,
as soon as all the free variables in e1 are in the type environment). The only nodes
that are allowed to be applied before are other [_] nodes that decompose the type
of a subexpression e2 such that e2 is incomparable to e1 or strictly smaller than e1
for the order Ď. Note that, in particular, a [_] node cannot be well-positioned if it
is performing aliasing for a binding variable introduced by a previous [_] node.

Definition 32 ([_]-canonical derivation). For a given expression order Ď, a
derivation D is [_]-canonical for the order Ď if every [_] node it contains is
acceptable and well-positioned in pD,Ďq.

54 Chapter 4. Declarative Type System

We next characterize derivations with specific shapes through four new defi-
nitions: union-free derivations, non-structural derivations, and most importantly,
form derivations and atomic derivations.

Definition 33 (Union-free derivation). A derivation D is said union-free if, for
every [_] node N of path π in D, π can be decomposed into π1;π2 such that Dpπ1q
is a [ÑI] node.

Roughly, a union-free derivation does not contain any [_] node except in the
subderivation of the premise of a [ÑI] node.

Definition 34 (Non-structural derivation). A derivation D is said non-
structural if, for every structural node N of path π in D, π can be decomposed
into π1; 0;π2 such that Dpπ1q is a [_] node.

A non-structural derivation does not contain any structural node except in the
subderivation of the definition premise of a [_] node.

Definition 35 (Form derivations, atomic derivations). Let Γ be an environment,
e an expression, and t a type. Let D be a derivation of Γ $: e : t.

We say that D is a form derivation if:

• D is non-structural, and

• For every [_] node in D, its definition premise is an atomic derivation.

We say that D is an atomic derivation if:

• D is union-free, and

• Every segment from the root of D to a leaf contains at least one structural
node, and

• For every [ÑI] node in D, its premise is a form derivation, and

• For every structural node in D that is not a [ÑI] node, its premises are
non-structural.

Roughly, atomic derivations are derivations that have exactly one structural
node: they can type a single application, or a single projection, or a single lambda
variable... Form derivations, on the other hand, are derivations that cannot apply
any structural rule directly: when typing an expression e, they must apply several
successive union-elimination rules on the different “atomic” subexpressions of e, and
each such subexpression can then be typed by an atomic derivation. Thus, in a form
derivation, structural rules only appear under the definition premises of [_] nodes.

For instance, for typing the expression px1x2, yq, a form derivation could first
apply a [_] rule performing the substitution tx1x2{xu, and type x1x2 using the struc-
tural rule [ÑE]. Then, in the body premise(s) of this [_] node, it applies a [_] rule

4.2. Canonical typing derivations 55

again, performing the substitution ty{yu, and typing y with a [Varλ] rule. Lastly,
it applies a [_] rule tpx, yq{zu and types px, yq using a [ˆI] rule. It is illustrated by
the derivation sketch below, where structural rules have their names written in red
(note that, in this example, [_] nodes only have one body premise as they use the
trivial type decomposition t1u):

[_]

[ÑE]
. . .

Γ $: x1 x2 : t
[_]

[Varλ]
Γ, x : t $: y : s

[_]
rˆIs rVar_s

Γ, x : t, y : s $: ztpx, yq{zu : tˆ s

Γ, x : t $: px, yqty{yu : tˆ s

Γ $: px, yqtx1 x2{xu : tˆ s

A derivation that is both a [_]-canonical derivation and a form derivation is
called [_]-canonical form derivation.

In summary, we just defined a notion of [_]-canonical form derivation that
severely restricts the use of the [_] rule. The next step is to prove that this does
not change the expressivity of the deduction system, in the sense that a judgment
is derivable in the full system if and only if it is derivable by a [_]-canonical form
derivation.

Lemma 4 (Normalization of [_]). Let Ď be an expression order. Let Γ be a type
environment, e an expression, and t a type. Let D be a derivation of Γ $: e : t.
Then, there exists, for some type t1Ÿt, a [_]-canonical form derivation of Γ $: e : t1

for the order Ď.

Proof. From D, we can build a [_]-canonical form derivation of Γ $: e : t1.
First, we can trivially eliminate inD the [_] nodes doing a substitution etex{xu

where e does not contain x. We note V the set of free binding variables in e

(V “ fvpeqXVarsB): these binding variables are the only ones that can be aliased
by a [_] node in the [_]-canonical derivation we are trying to build.

Then, we proceed by induction on sizepeq, with sizepeq inductively defined as
follows:

sizepxq “ 1 sizepxq “ 1 if x P V, 0 otherwise

sizepcq “ 1 sizepe1e2q “ 1` sizepe1q ` sizepe2q

sizepλx.eq “ 1` sizepeq sizeppe1, e2qq “ 1` sizepe1q ` sizepe2q

sizepπieq “ 1` sizepeq sizep(ePτ) ? e1 : e2q “ 1` sizepeq ` sizepe1q ` sizepe2q

Note that the set V does not change during this induction: it corresponds to the
free binding variables in the initial expression e.

The base case, sizepeq “ 0, implies that e is a binding variable not in V , and
thus it is a valid [_]-canonical form derivation.

For the inductive case sizepeq ą 0, we proceed as follows. We consider all the
subexpressions e1 of e such that:

56 Chapter 4. Declarative Type System

• e1 is not a binding variable, or it is a binding variable in V , and

• @x P fvpe1q. x P dompΓq, and

• There exists in D a subderivation A whose judgment is Γ1 $: e1 : t1 for some
Γ1, e1, and t1.

Among all these subexpressions, we choose one that is minimal for the expression
order Ď. We note e1 this subexpression, and A a derivation of Γ1 $: e1 : t1. Note
that we are sure that there exists at least one such subexpression e1, otherwise it
would mean that e is a binding variable not in V , contradicting sizepeq ą 0.

From A, we can obtain a derivation Γ $: e1 : 1 by using a [ď] node and by
using the fact that @x P fvpe1q. x P dompΓq. Also note that there cannot be in D
any [_] node substituting a strict subexpression e2 of e1: otherwise we would have
e2 Ď e1, contradicting the minimality of e1. Thus, we can apply Lemma 3 on D:
it yields a derivation D1 that starts with a [_] node performing the substitution
te1{xu and whose body premises are x-aliasing-free.

The definition premise of D1 cannot contain any [_] node, except in the sub-
derivation of a [ÑI] node: this is ensured by the fact that it starts with an inter-
section of structural and/or [Var_] nodes, and by the minimality of e1. In the case
where it contains one or several [ÑI] nodes, we apply the induction hypothesis
on their premises in order to turn them into [_]-canonical form derivations.

Lastly, we apply the induction hypothesis on each body premise of D1, with
respects to the new expression order Ďpx,e1q (cf. Definition 28). The resulting
derivation satisfies all the properties of this lemma.

4.2.2.2 Normalization of [Inst] nodes

Now, we focus on defining another notion of canonical derivation that constrains,
this time, the use of the [Inst] rule. Roughly, we can restrict the use of the [Inst]
rule so that it is only used as a premise of a [ÑE], [ˆE1], [ˆE2], [0], [P1], or [P2]
node. In particular, we get rid of premature instantiations: an instantiation should
only happen when it is made necessary by an application, a projection, or a type
test.

Lemma 5. Let Γ be a type environment, e an expression, and t a type. If Γ $: e : t
is derivable, then for every renaming ρ, Γ $: e : tρ is derivable.

Proof. We proceed by induction on the derivation of Γ $: e : t.
Note that any polymorphic type variable in t is introduced either by a [Varλ],

[Var_], or [Inst] node. Thus, the interesting cases are the following:

• If the root is a [Varλ] or [Var_] node performing a renaming ρ1, we perform
the renaming ρ ˝ ρ1 instead, and

• If the root is an [Inst] node performing a substitution σ, we perform the
substitution ρ ˝ σ ˝ ρ´1 instead.

4.2. Canonical typing derivations 57

• The other cases are straightforward applications of the induction hypothesis.

Proving a normalization lemma for [Inst] nodes requires manipulating sets of
substitutions. Thus, we first prove some properties about substitutions.

Proposition 5. Let tpti, t1iquiPI be a set of pairs of types such that @i P I. t1iŸ ti.
Then, the following relation holds:

Ź

iPI t
1
i Ÿ

Ź

iPI ti.

Proof. For each i P I, let Σi be a set of substitutions such that t1iΣi ď ti. We
consider the set of substitutions Σ “

Ť

iPI Σi, and we show that p
Ź

iPI t
1
iqΣ ď

Ź

iPI ti:
Ź

σPΣp
Ź

iPI t
1
iqσ »

Ź

iPI

Ź

σPΣi
p
Ź

jPI t
1
jqσ

ď
Ź

iPI

Ź

σPΣi
t1iσ

ď
Ź

iPI t
1
iΣi ď

Ź

iPI ti

Proposition 6. Let tpti, t1iquiPI be a set of pairs of types such that @i P I. t1i Ÿ ti
and such that @i, j P I. varspt1iq X varspt1jq X VP “ ∅. Then, the following relation
holds:

Ž

iPI t
1
i Ÿ

Ž

iPI ti.

Proof. For each i P I, let Σi be a set of substitutions such that t1iΣi ď ti. We
consider the set of substitutions Σ “ tσ1 Y . . . Y σn | σ1 P Σ1, . . . , σn P Σnu

for I “ t1, . . . , nu, where Y denotes the union of two substitutions with disjoint
domains (this is guaranteed by the hypothesis @i, j P I. varspt1iqX varspt1jqXVP “

∅), and we show that p
Ž

iPI t
1
iqΣ ď

Ž

iPI ti:
Ź

σPΣp
Ž

iP1. .n t
1
iqσ

»
Ź

pσ1,...,σnqPΣ1ˆ¨¨¨ˆΣn
p
Ž

iP1. .n t
1
iqpσ1 Y . . .Y σnq

»
Ź

pσ1,...,σnqPΣ1ˆ¨¨¨ˆΣn

Ž

iP1. .n t
1
ipσ1 Y . . .Y σnq

»
Ź

pσ1,...,σnqPΣ1ˆ¨¨¨ˆΣn

Ž

iP1. .n t
1
iσi (disjointness of type variables)

»
Ž

iP1. .n

Ź

σiPΣi
t1iσi (distributivity of _ over ^)

»
Ž

iP1. .n t
1
iΣi ď

Ž

iP1. .n ti

Definition 36 ([Inst]-canonical derivation). A derivation D is [Inst]-canonical
if every [Inst] node it contains is part of a [Ÿ] pattern that is either:

• The first premise of a [0], [P1] or [P2] node, or

58 Chapter 4. Declarative Type System

• The premise of a [ˆE1] or [ˆE2] node, or

• One of the premises of a [ÑE] node

The idea of the normalization lemma for the [Inst] rule is to push applications
of [Inst] towards the root as much as possible.

Lemma 6 (Normalization of [Inst]). Let Ď be an expression order. Let Γ be a
type environment, e an expression, and t a type. Let D be a [_]-canonical form
(resp. atomic) derivation of Γ $: e : t for the order Ď. Then there exists, for some
type t1 Ÿ t, a [_][Inst]-canonical form (resp. atomic) derivation of Γ $: e : t1 for
the order Ď.

Proof. We build a [_][Inst]-canonical form (resp. atomic) derivation by induction
on D for the order pď_,ď˚qlex, where D1 ď_ D2 ô |D1|r_s ď |D2|r_s and
D1 ď˚ D2 ô |D1| ď |D2|.

• If the root is an axiom ([Varλ],[Var_],[Const]), the derivation is already a
[_][Inst]-canonical derivation.

• If the root is a [Inst] or [ď], we consider its unique premise as our new deriva-
tion and apply the induction hypothesis on it.

• If the root is a [^], we call the induction hypothesis on all its premises and use
the resulting derivations as premises of a new [^] root, deriving a type t1. We
know that t1 satisfies t1 Ÿ t according to Proposition 5.

• If the root is a [_] of the following form:

[_]

A

Γ $: e1 : s

Bi

Γ, x : s^ ui $: e : t
@i P I

Γ $: ete1{xu : t

1. We first apply the induction hypothesis on A, which gives a derivation A1.
We consider the following derivation, where s1Ÿs (and thus s1^uiŸs^ui):

[_]

A1

Γ $: e1 : s1
B1i

Γ, x : s1 ^ ui $: e : t
@i P I

Γ $: ete1{xu : t

with B1i a derivation easily derived from Bi by monotonicity (Lemma 1).
Note that the application of the monotonicity lemma might insert un-
wanted [Ÿ] patterns on [Varλ] and [Var_] nodes, but they will be elimi-
nated with the next step.

4.2. Canonical typing derivations 59

2. The next step is to apply the induction hypothesis on the tB1iuiPI premises,
yielding some derivations tB2i uiPI that derive some types ttiuiPI (with
@i P I. tiŸt). We can suppose that all the ttiuiPI have disjoint polymorphic
type variables: if it is not the case, it can be ensured by applying Lemma 5
to these premises. Then, we consider the following derivation:

[_]

A1

Γ $: e1 : s1
[ď]

B2
i

Γ, x : s1 ^ ui $: e : ti

Γ, x : s1 ^ ui $: e :
Ž

iPI ti
@i P I

Γ $: ete1{xu :
Ž

iPI ti

The result
Ž

iPI ti satisfies
Ž

iPI ti Ÿ t according to Proposition 6.

3. The new [ď] nodes that appear as premise of the [_] root could break the
properties of Lemma 4 if the corresponding B2i ends with a [_] node. In
this case, we move up the faulty [ď] nodes as needed using this transfor-
mation:

[ď]

[_]

M

Γ $: e1 : s

Ni

Γ, x : s^ ui $: e : t
1
@i P I

Γ $: ete1{xu : t1

Γ $: ete1{xu : t

Ó

[_]

M

Γ $: e1 : s
[ď]

Ni

Γ, x : s^ ui $: e : t
1

Γ, x : s^ ui $: e : t
@i P I

Γ $: ete1{xu : t

• The other cases are straightforward applications of the induction hypothesis.

4.2.2.3 Normalization of [ď] nodes

Again, we define another notion of canonical derivation, this time to constrain the
use of the [ď] rule. Similarly to the [Inst] rule, we want to avoid premature applica-
tions of [ď]. The idea of the associated normalization lemma is to push applications
of the [ď] rule towards the root as much as possible, making them appear only as
premises of [ÑE], [ˆE1], [ˆE2], [P1], [P2], and [_] nodes.

Definition 37 ([ď]-canonical derivation). A derivation D is [ď]-canonical if
every [ď] node it contains is either:

• The first premise of a [P1] or [P2] node, or

• One of the body premises of a [_] node, or

60 Chapter 4. Declarative Type System

• The premise of a [ˆE1] or [ˆE2] node, or

• The first premise of a [ÑE] node

Lemma 7 (Normalization of [ď]). Let Ď be an expression order. Let Γ be a type
environment, e an expression, and t a type. Let D be a [_][Inst]-canonical form
(resp. atomic) derivation of Γ $: e : t for the order Ď. Then there exists, for some
type t1 Ÿ t, a [_][Inst][ď]-canonical form (resp. atomic) derivation of Γ $: e : t1

for the order Ď.

Proof. We build a [_][Inst][ď]-canonical form (resp. atomic) derivation by in-
duction on D for the order pď_,ď˚qlex, where D1 ď_ D2 ô |D1|r_s ď |D2|r_s
and D1 ď˚ D2 ô |D1| ď |D2|.

• If the root is an axiom ([Varλ],[Var_],[Const]), the derivation is already a
[_][Inst][ď]-canonical derivation.

• If the root is a [Inst] or [ď], we consider its unique premise as our new deriva-
tion and apply the induction hypothesis on it.

• If the root is a [^], we call the induction hypothesis on all its premises and use
the resulting derivations as premises of a new [^] root, deriving a type t1. We
know that t1 satisfies t1 Ÿ t (trivial).

• If the root is a [ÑI], we call the induction hypothesis on its premise and use
the resulting derivation as premise of a new [ÑI] root, deriving a type t1. We
know that t1 satisfies t1 Ÿ t (trivial).

• If the root is a [_] of the following form:

[_]

A

Γ $: e1 : s

Bi

Γ, x : s^ ui $: e : t
@i P I

Γ $: ete1{xu : t

1. We first apply the induction hypothesis on A, yielding a derivation A1.
We then consider the following derivation, with s1 Ÿ s:

[_]

A1

Γ $: e1 : s1
B1i

Γ, x : s1 ^ ui $: e : t
@i P I

Γ $: ete1{xu : t

where each B1i is derived from Bi by applying Lemma 1 (monotonicity),
and then Lemma 6 in order to normalize [Inst] nodes that might have

4.2. Canonical typing derivations 61

been introduced by the monotonicity lemma. Note that this might add
unwanted [ď] nodes, but they will be eliminated with the next step.

2. We apply the induction hypothesis on the tB1iuiPI premises, yielding some
derivations tB2i uiPI that derive some types ttiuiPI (with @i P I. ti Ÿ t).
Then, we consider the following derivation:

[_]

A1

Γ $: e1 : s1
[ď]

B2
i

Γ, x : s1 ^ ui $: e : ti

Γ, x : s1 ^ ui $: e :
Ž

iPI ti
@i P I

Γ $: ete1{xu :
Ž

iPI ti

The result
Ž

iPI ti trivially satisfies
Ž

iPI ti Ÿ t.

3. The new [ď] nodes that appear as premise of the [_] root could break the
properties of Lemma 4 if the corresponding B2i ends with a [_] node. In
this case, we move up the faulty [ď] nodes as needed using this transfor-
mation:

[ď]

[_]

M

Γ $: e1 : s

Ni

Γ, x : s^ ui $: e : t
1
@i P I

Γ $: ete1{xu : t1

Γ $: ete1{xu : t

Ó

[_]

M

Γ $: e1 : s
[ď]

Ni

Γ, x : s^ ui $: e : t
1

Γ, x : s^ ui $: e : t
@i P I

Γ $: ete1{xu : t

• The other cases are straightforward applications of the induction hypothesis.

4.2.2.4 Normalization of [^] nodes

Lastly, we define a notion of canonical derivation that constrains the use of [^]
nodes.

Definition 38 ([^]-canonical derivation). A derivation D is [^]-canonical if
every [^] node it contains has either:

• Only [Inst] premises, or

• Only [ÑI] premises

62 Chapter 4. Declarative Type System

Lemma 8 (Normalization of [^]). Let Ď be an expression order. Let Γ be a type
environment, e an expression, and t a type. Let D be a [_][Inst][ď]-canonical
form (resp. atomic) derivation of Γ $: e : t for the order Ď. Then there exists
a [_][Inst][ď][^]-canonical form (resp. atomic) derivation of Γ $: e : t for the
order Ď.

Proof. We build a [_][Inst][ď][^]-canonical form (resp. atomic) derivation by
structural induction on D.

If D is a form derivation, then either the root is a [_] node, in which case we
apply the induction hypothesis on every premise of D, or D is a [Var_] node (or
an intersection of multiple copies of this [Var_] node), in which case we can just
return this [Var_] node.

Otherwise, D is an atomic derivation. We can suppose without loss of general-
ity that its root is a [^] node. If some premises are also [^] nodes, we recursively
merge them with the root. Since D is a [_][Inst][ď]-canonical atomic derivation,
we know that all the premises are structural nodes (of the same kind). There are
several cases:

• If all premises are [ÑI] nodes, we apply the induction hypothesis on their
premises.

• If all premises are [ÑE] nodes, we apply the following transformation:

[^]
p@i P Iq

[ÑE]

[Ÿ]

[Var_]
Γ $: x1 : Γpx1q

Γ $: x1 : ti Ñ si
[Ÿ]

[Var_]
Γ $: x2 : Γpx2q

Γ $: x2 : ti

Γ $: x1x2 : si

Γ $: x1x2 :
Ź

iPI si

Ó

[ÑE]

[Ÿ]

[Var_]
Γ $: x1 : Γpx1q

Γ $: x1 : p
Ź

iPI tiq Ñ p
Ź

iPI siq
[Ÿ]

[Var_]
Γ $: x2 : Γpx2q

Γ $: x2 :
Ź

iPI ti

Γ $: x1x2 :
Ź

iPI si

Note that Γpx1q Ÿ p
Ź

iPI tiq Ñ p
Ź

iPI siq can be deduced from @i P I. Γpx1q Ÿ
ti Ñ si using Proposition 5. Similarly, Γpx2q Ÿ

Ź

iPI ti can be deduced from
@i P I. Γpx2q Ÿ ti.

• The other cases are similar.

Now that we have defined four notions of canonical derivation constraining re-
spectively the use of the [_] rule, the [Inst] rule, the [ď] rule, and the [^] rule, we
combine them together into a single definition.

4.3. Type safety 63

Definition 39 (Canonical derivation). Let Ď be an expression order. A canonical
derivation for the expression order Ď is a [_][Inst][ď][^]-canonical derivation for
the expression order Ď.

A derivation that is both a canonical derivation and a form derivation is called
canonical form derivation. Likewise, a derivation that is both a canonical derivation
and an atomic derivation is called canonical atomic derivation.

When qualifying a derivation D of canonical, the expression order Ď may be
omitted: in this case, it means that there exists an expression order Ď such that D
is canonical for the order Ď.

Theorem 1 (Normalization of derivations). Let Ď be an expression order. Let
Γ be a type environment, e an expression, and t a type. If Γ $: e : t is derivable,
then there exists, for some type t1 Ÿ t, a canonical form derivation of Γ $: e : t1

for the order Ď.

Proof. Successive application of Lemma 4, Lemma 6, Lemma 7, and Lemma 8.

Canonical form derivations restrain the possible locations where [_], [Inst], [ď],
and [^] rules can be used, and are thus a first step towards an algorithmic type
system. In addition, we can use the structure of canonical form derivations to
establish a type safety theorem for the declarative type system: this is the focus of
the next section.

4.3 Type safety

As stated by Milner (1978), “well-typed programs cannot go wrong”. In this section,
we formalize and prove that this is true for our declarative type system. For that we
use a standard methodology: we first prove subject reduction (Section 4.3.4), stating
that the type of an expression is preserved by reduction. Then, we prove progress
(Section 4.3.5), stating that a closed well-typed expression that is not already a
value can be reduced. However, some difficulties must be addressed first, for subject
reduction to hold. We tackle those in Sections 4.3.1, 4.3.2, and 4.3.3.

4.3.1 The parallel semantics

Our plan is to prove type safety by proving subject reduction and progress. Unfor-
tunately, subject reduction does not hold for the semantics presented in Figure 3.1,
as performing a reduction step on an expression e might break the use of a [_] rule.
Indeed, if in the typing derivation of the reducendum a rule [_] substitutes multiple
occurrences of the subexpression e by a variable x, reducing one occurrence of e but
not the others can make the application of this [_] rule impossible for the reductum:

64 Chapter 4. Declarative Type System

the correlation between the reduced occurrence of e and the other occurrences of e
is thus lost.

For instance, consider the pair pe, eq where e “ pλx.f xq 42, under the type
environment Γ “ tf : 1 Ñ 1u. This pair can be given the type pIntˆIntq_p␣Intˆ

␣Intq using the [_] rule. Indeed, although e can only be typed 1, the [_] rule allows
correlating the type of both occurrences of e by considering two cases: a first case
where both occurrences have the type Int, and a second case where they both have
the type ␣Int.

Now, we apply a step of reduction to pe, eq, yielding the expression pf 42, eq.
In this new expression, it is no longer possible to correlate the left and right parts
of the pair: the [_] rule does not apply anymore as f 42 and pλx.f xq 42 are not
syntactically equivalent. Thus, it is impossible to infer for this expression a type that
is smaller or equivalent to pIntˆ Intq_ p␣Intˆ␣Intq. Actually, the smallest type
we can infer for it is 42ˆ 1, which is not a subtype of pIntˆ Intq _ p␣Intˆ␣Intq

(in particular, the value p42, trueq is in the former type and not in the latter).

To circumvent this issue, we introduce a notion of parallel reduction which forces
to reduce all occurrences of a subexpression at the same time. With this semantics,
the expression pe, eq reduces to pf 42, f 42q after one step of reduction, preserving
the syntactic equivalence between the left and right parts of the pair.

The idea is to first define reduction rules that only apply at top-level, and then
define a context rule (cf. rule [κ] below) that allows reducing under an evaluation
context, but that also applies this reduction everywhere in the term. Since our
calculus is pure and deterministic, proving a type safety theorem for the parallel
semantics will allow us to deduce another (weaker) type safety theorem for the initial
semantics (Figure 3.1): this weaker version guarantees that a well-typed term either
diverges or reduces to a value of the same test type τ (type preservation is not
guaranteed for an arbitrary type t, but for a test type τ).

The parallel semantics is formalized in Figure 4.3. A step of reduction happening
at top-level is noted ⇝J, and a step of reduction of the parallel semantics under
any evaluation context is noted ⇝P . Notice that the rule [κ] applies a substitution
from an expression e1 to an expression e, which is defined below.

Definition 40 (Expression substitution). The substitution in e2 of the expression
e1 by the expression e, noted e2te{e1u, is defined as follows:

• If e1 ”α e
2, then e2te{e1u “ e.

• If e1 ”α e
2, then e2te{e1u is inductively defined as

4.3. Type safety 65

Top-level reductions:

pλx.eqv ⇝J etv{xu (4.1)
π1pv1, v2q ⇝J v1 (4.2)
π2pv1, v2q ⇝J v2 (4.3)

(vPτ) ? e1 : e2 ⇝J e1 if v P τ (4.4)
(vPτ) ? e1 : e2 ⇝J e2 if v P ␣τ (4.5)

Parallel reductions:

[κ]
e⇝J e

1

Eres⇝P pEresqte
1{eu

Evaluation Context E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e

Figure 4.3: Parallel Semantics

cte{e1u “ c

xte{e1u “ x

xte{e1u “ x

pe1e2qte{e
1u “ pe1te{e

1uqpe2te{e
1uq

pλx.e˝qte{e
1u “ λx.pe˝te{e

1uq x R fvpe1q, x R fvpeq

pπie˝qte{e
1u “ πipe˝te{e

1uq

pe1, e2qte{e
1u “ pe1te{e

1u, e2te{e
1uq

p(e1Pt) ? e2 : e3qte{e1u “ (e1te{e
1uPt) ? e2te{e

1u : e3te{e1u

Expression substitutions are up to α-renaming: the conditions x R fvpe1q and
x R fvpeq in the case of λ-abstractions can be ensured by first performing an α-
renaming on λx.e˝.

Here is a reduction step on the previous example using the parallel semantics:

[κ]
pλx.f xq 42⇝J f 42

ppλx.f xq 42, pλx.f xq 42q⇝P pf 42, f 42q

The parallel semantics is extended to programs in a straightforward way:

Reduction rule letx = v ; p ⇝P,Pr ptv{xu

Evaluation Context P ::“ r s | letx = rs ; p

e⇝P e1

P res⇝P,Pr P re
1s

4.3.2 Elimination of instantiations and generalizations

In this section, we show that we can eliminate, in the typing derivation of a pro-
gram, every [Inst] node and every generalization of monomorphic type variables

66 Chapter 4. Declarative Type System

happening in a [TopLevel-Expr] node. This is done by performing all necessary
instantiations beforehand (that is, in the initial environment Γ). Note that this is
only possible because of intersection types: they can replace parametric polymor-
phism locally by encoding all the instantiations we need for a type.

Definition 41 (Instantiation-free derivation). A derivation D of Γ $: e : t is
instantiation-free if it does not contain any [Inst] node.

Lemma 9 (Weak monotonicity). Let D be an instantiation-free derivation of
Γ $: e : t, and Γ1 be an environment such that Γ1 ď Γ. Then, there exists an
instantiation-free derivation of Γ1 $: e : t.

Proof. Straightforward structural induction on the derivation Γ $: e : t. If the
root is a [Var_-N] or [Varλ-N] node, we use a [ď] node. The other cases are
straightforward applications of the induction hypothesis.

Lemma 10 (Elimination of [Inst] nodes). Let Γ be an environment, e an ex-
pression, and t a type. Let D be a derivation of Γ $: e : t. Let Σ be a set of
substitutions. Then, there exists an instantiation-free derivation of ΓΣ1 $: e : tΣ
for some set of substitutions Σ1.

Proof. We proceed by structural induction on the derivation D.
We consider the root of D:

[Const] The type t has no type variable, thus we can directly conclude by choos-
ing Σ1 “ ∅.

[Varλ] We pose e ” x, and we have t » Γpxq. We can derive ΓΣ1 $: x : tΣ using
a [Varλ] node by choosing Σ1 “ Σ.

[Var_] Similar to the previous case.

[Inst] or [ď] We have t1 Ÿ t Ÿ tΣ, and thus by transitivity t1 Ÿ tΣ. Thus, there
exists some Σ2 such that t1Σ2 ď tΣ. We apply the induction hypothesis on
the premise Γ $: e : t1 in order to derive ΓΣ1 $: e : t1Σ2. We can then derive
ΓΣ1 $: e : tΣ by inserting a [ď] node at the root.

[_] The [_] node at the root is doing a substitution ete1{xu. We first apply
the induction hypothesis on its body premises. It yields some derivations
ΓΣ1i, x : sΣ1i ^ ui $: e : tΣ for i P I. We consider the set of substitutions
Σ1 “

Ť

iPI Σ
1
i.

4.3. Type safety 67

Now, we derive ΓΣ2 $: e1 : sΣ1 for some Σ2 by applying the induction
hypothesis on the definition premise. We pose Σ3 “ Σ2YΣ1. We transform,
for each i P I, the derivation ΓΣ1i, x : sΣ1i ^ ui $: e : tΣ into a derivation
ΓΣ3, x : sΣ1 ^ ui $: e : tΣ using Lemma 9. Similarly, we transform ΓΣ2 $:

e1 : sΣ1 into ΓΣ3 $: e1 : sΣ1. By combining all those derivations into a [_]
node, we can derive ΓΣ3 $: ete1{xu : tΣ.

Other rules We apply the induction hypothesis to each premise Γ $: ei : si in
order to derive, for i P I, ΓΣ1i $: ei : siΣ. We then consider Σ1 “

Ť

iPI Σ
1
i,

and derive, for each i P I, ΓΣ1 $: ei : siΣ using Lemma 9. We then use these
derivations as premises of a node of the same kind as the initial root.

Lemma 11 (Monomorphization lemma). Let e be an expression, Γ an environ-
ment, and t a type. Let D be a derivation of Γ $: e : t. Let σ be an injec-
tive renaming from polymorphic type variables to monomorphic ones such that
varspΓq X VP Ď dompσq. Then, there exists Ψ1 such that pΓσqΨ1 $: e : tσ.

Proof. Using Lemma 10, we transform D into an instantiation-free derivation D1

of ΓΣ1 $: e : t for some Σ1. Then, we build a derivation D2 of pΓΣ1qσ $: e : tσ

by applying the renaming σ to every type and environment in D1. This is only
possible because D1 does not contain any [Inst] node (substituting a polymorphic
type variable by a monomorphic one could invalidate an [Inst] node).

As σ is injective, it has an inverse substitution ϕ, which is a renaming from
monomorphic type variables to polymorphic type variables. We pose Ψ1 “ tσ ˝

σ1 ˝ ϕ | σ1 P Σ1u (it is a monomorphic substitution since dompΣ1q Ď varspΓq X
VP Ď dompσq). We have pΓσqΨ1 » pppΓσqϕqΣ1qσ » pΓΣ1qσ. Thus, D2 derives
pΓσqΨ1 $: e : tσ, which concludes this proof.

Lemma 12. Let D be a derivation of Γ $: e : t, and ψ a substitution. Then,
there exists a derivation of Γψ $: e : tψ.

Proof. Straightforward structural induction on D. The type substitution ψ can
be applied to every type (and type environment) in D, and as dompψq Ď VM

it does not conflict with an [Inst] node. Subtyping relations are preserved as
t1 ď t2 ñ t1ψ ď t2ψ.

We define the $: Pr deduction rules for typing programs:

[TopLevel-Expr]
Γ $: e : t

Γ $: Pr e : tϕ
ϕ#Γ [TopLevel-Let]

Γ $: Pr e : t Γ, x : t $: Pr p : t
1

Γ $: Pr letx = e ; p : t1

The type safety properties will be proved for the $: Pr type system, which is
equivalent to the $Pr type system:

68 Chapter 4. Declarative Type System

Proposition 7. For every program p, type environment Γ and type t:

Γ $Pr e : tô Γ $: Pr e : t

Proof. Both directions are proved by structural induction on the derivation, using
Proposition 3.

Definition 42 (Generalization-free derivation). A derivation D of Γ $: Pr p : t is
generalization-free if every [TopLevel-Expr] node it contains uses the substi-
tution ϕ “ ∅.

Lemma 13 (Monotonicity of programs). Let Γ,Γ1 be two environments such that
Γ1 ď Γ. Let p be a program, and t a type. Let D be a generalization-free derivation
of Γ $: Pr p : t. Then, there exists a generalization-free derivation of Γ1 $: Pr p : t.

Proof. Straightforward induction on D, using monotonicity of $: (Lemma 9).

Lemma 14 (Elimination of generalization). Let p be a program, and t a type.
Let D be a derivation of ∅ $: Pr p : t. Then, there exists a generalization-free
derivation of ∅ $: Pr p : tσ for some injective renaming σ from polymorphic type
variables to fresh monomorphic ones.

Proof. Let σ be an injective renaming that maps every polymorphic type variable
that occurs in D to a fresh monomorphic type variable.

Now, we prove by structural induction on a derivation D of Γ $: Pr p : t

that, given a set of substitutions Ψ, there exists a generalization-free derivation
of pΓσqΨ1 $: Pr p : ptσqΨ for some set of substitutions Ψ1.

We consider the root of the derivation:

[TopLevel-Expr] The conclusion of the root is Γ $: Pr e : t1ϕ, and the premise
is Γ $: e : t1.

We pose ψ “ pσ ˝ ϕq
ˇ

ˇ

dompϕq. Note that ψ#Γ. By applying Lemma 12 on
Γ $: e : t1 and ψ, we get Γ $: e : t1ψ. Then, by applying Lemma 11, we
get pΓσqΨ1 $: e : pt1ψqσ for some Ψ1. As pt1ψqσ » ppt1ϕqσqσ » pt1ϕqσ, this
judgment can be rewritten pΓσqΨ1 $: e : pt1ϕqσ.

By applying Lemma 12 on this last judgment and Ψ, we derive ppΓσqΨ1qΨ $:
e : ppt1ϕqσqΨ. By posing Ψ2 “ tψ ˝ψ1 | ψ P Ψ, ψ1 P Ψ1u, this judgment can
be rewritten pΓσqΨ2 $: e : ppt1ϕqσqΨ. We can conclude this case by building
a generalization-free [TopLevel-Expr] node that uses this premise.

4.3. Type safety 69

[TopLevel-Let] The conclusion of the root is Γ $: Pr letx = e ; p : t, and the
two premises are:

1. Γ $: Pr e : t
1

2. Γ, x : t1 $: Pr p : t

By applying the induction hypothesis on the premise (2), we get a
generalization-free derivation B of pΓσqΨ1, x : pt1σqΨ1 $: Pr p : tσ for some
Ψ1.

By applying the induction hypothesis on the premise (1) and Ψ1, we get a
generalization-free derivation A of pΓσqΨ2 $: Pr e : pt

1σqΨ1 for some Ψ2.

We now consider the set of substitutions Ψ3 “ Ψ2 Y Ψ. By monotonicity
(Lemma 13), we transform A into a generalization-free derivation A1 of
pΓσqΨ3 $: Pr e : pt1σqΨ1 and B into a generalization-free derivation B1 of
pΓσqΨ3, x : pt1σqΨ1 $: Pr p : tσ.

We can thus conclude by building a generalization-free derivation of
pΓσqΨ3 $: Pr letx = e ; p : tσ using a [TopLevel-Let] node.

4.3.3 Deriving negations of arrows

Before proving the type safety, we have to deal with one last difficulty: the subject
reduction still does not hold for our type system $: , even using the parallel semantics.
As a counterexample, consider this reduction step:

ppλx.xq false, λx.xq⇝P pfalse, λx.xq

Let us call e the expression before reduction. We can derive for e the type
Falseˆ ppFalseÑ Falseq ^ ␣pFalseÑ Trueqq by using a [_] node as follows:

[_]

A

∅ $: λx.x : FalseÑ False

B

y : pFalseÑ Falseq ^ pFalseÑ Trueq $: py false, yq : 0
C

y : pFalseÑ FalseqzpFalseÑ Trueq $: py false, yq : Falseˆ ppFalseÑ FalseqzpFalseÑ Trueqq

∅ $: py false, yqtpλx.xq{yu : Falseˆ ppFalseÑ FalseqzpFalseÑ Trueqq

This [_] node is decomposing the type of both occurrences of λx.x into FalseÑ

True and ␣pFalseÑ Trueq. The subderivations A and C are straightforward. The
subderivation B uses the fact that pFalseÑ Falseq^pFalseÑ Trueq » FalseÑ 0,
and thus the application can be typed 0 (which makes the pair also have type 0).

However, after one step of reduction, we obtain the expression pfalse, λx.xq for
which it is not possible to infer the type FalseˆppFalseÑ FalseqzpFalseÑ Trueqq:
applying a [_] rule as above would be useless as there is only one occurrence of λx.x,
and there is no other way to derive a negative arrow type for the λ-abstraction λx.x.

Another way to interpret this example is by seeing the term pλx.xq false as a
witness of the absurdity to derive the type FalseÑ True for λx.x, thus allowing to

70 Chapter 4. Declarative Type System

derive its negation ␣pFalseÑ Trueq. After reduction, this witness disappears, and
thus the type ␣pFalseÑ Trueq is not derivable anymore.

More generally, the property that we need for subject reduction to hold is a
property of atomicity of the type of values: for an environment Γ, a typeable value
v, and a type t, we must be able to derive either Γ $: v : t or Γ $: v : ␣t (a
more specific version of this property is proved in Lemma 19). Unfortunately, this
property does not hold in our current type system because of the impossibility
to derive, in general, a negative arrow type for a λ-abstraction (e.g., by choosing
t “ pFalseÑ Trueq, we can neither derive ∅ $: λx.x : t nor ∅ $: λx.x : ␣t).

Usually, set-theoretic type systems (such as Frisch et al. (2008)) overcome this
difficulty by adding this deduction rule (in a language where λ-abstractions are
explicitly annotated with their type):

[Abs-]
Γ $ λ

Ź

iPI siÑtix. e : 1

Γ $: ete1{xu : ␣psÑ tq
␣psÑ tq ^ p

Ź

iPI si Ñ tiq fi 0

It allows any λ-abstraction to be typed with a negative arrow type, as long as
this negative arrow type is compatible (i.e., not disjoint) with the type annotated for
the λ-abstraction. Using this rule, the λ-abstraction λFalseÑFalsex.x can be typed
␣pFalse Ñ Trueq. Soundness is ensured by the side condition: it prevents a λ-
abstraction from being given an arrow type sÑ t and its negation ␣psÑ tq, which
could then yield the type 0 by using a [^] rule.

In our language, λ-abstractions are not annotated with (the positive part) of
their type. Thus, we cannot add a rule such as the [Abs-] rule above. Instead, we
define a new type system $: N , shown in Figure 4.4.

There are several things to note about this new type system. First, there is no
intersection rule: instead, the [ÑI-N] rule can directly infer a conjunction of several
arrow types (in other terms, the intersection rule has been embedded in the [ÑI-N]
rule). As shown in Lemma 15, this can be done without loss of generality. The
reason why the intersection rule has been eliminated is because it would make the
type system unsafe in the presence of this new [ÑI-N] rule (this is explained later).

Second, the [ÑI-N] rule allows deriving any conjunction of negative arrow types
for a λ-abstraction, as long as these negative arrow types are compatible with the
positive arrow types inferred. This is ensured by the side condition

Ź

iPIpui Ñ

tiq ^
Ź

jPJ ␣pvj Ñ v1jq fi 0. This side condition prevents a [ÑI-N] node from
deriving the type 0 for a λ-abstraction, which would be unsound. Note that this
is also the reason why the intersection rule has been removed: it would make it
possible to infer the type 0 for a λ-abstraction, as shown by the derivation below.

[^]
[ÑI-N]

[Varλ-N]
x : 0 $: N x : 0

∅ $: N λx.x : p0 Ñ 0q ^ ␣pFalseÑ Falseq
[ÑI-N]

[Varλ-N]
x : False $: N x : False

∅ $: N λx.x : FalseÑ False

∅ $: N λx.x : 0

Although it is more subtle, the side condition @i, j P I. i ‰ j ñ ui ^uj » 0 has
the same purpose: it prevents a potentially unsound intersection from happening.

4.3. Type safety 71

[Const-N]
Γ $: N c : bc

[Varλ-N]
Γ $: N x : Γpxqρ

[Var_-N]
Γ $: N x : Γpxqρ

[ÑI-N]
p@i P Iq Γ, x : ui $: N e : ti

Γ $: N λx.e :
Ź

iPIpui Ñ tiq ^
Ź

jPJ ␣pvj Ñ v1
jq

I ‰ ∅, @i, j P I. i ‰ j ñ ui ^ uj » 0

p
Ź

iPIpui Ñ tiq ^
Ź

jPJ ␣pvj Ñ v1
jqq fi 0

[ÑE-N]
Γ $: N e1 : t1 Ñ t2 Γ $: N e2 : t1

Γ $: N e1e2 : t2
[ˆI-N]

Γ $: N e1 : t1 Γ $: N e2 : t2

Γ $: N pe1, e2q : t1 ˆ t2

[ˆE1-N]
Γ $: N e : t1 ˆ t2

Γ $: N π1e : t1
[ˆE2-N]

Γ $: N e : t1 ˆ t2

Γ $: N π2e : t2

[P1-N]
Γ $: N e : τ Γ $: N e1 : t1

Γ $: N (ePτ) ? e1 : e2 : t1
[P2-N]

Γ $: N e : ␣τ Γ $: N e2 : t2

Γ $: N (ePτ) ? e1 : e2 : t2

[0-N]
Γ $: N e : 0

Γ $: N (ePτ) ? e1 : e2 : 0
[ď-N]

Γ $: N e : t

Γ $: N e : t1
t ď t1

[_-N]
Γ $: N e1 : s p@i P Iq Γ, x : s^ ui $: N e : t

Γ $: N ete1{xu : t
tuiuiPI P Partp1q

Figure 4.4: Declarative Type System with Negations of Arrows

Consider the expression pλy.pλx.xqq 42. As we have just seen, λx.x can be typed
False Ñ False using a [ÑI-N] node, and it can also be typed ␣pFalse Ñ Falseq

using a different [ÑI-N] node. When typing the outer λ-abstraction λy.pλx.xq using
a [ÑI-N] node without this side condition, we may choose to type it twice for the
same domain 1. This way, we may derive the type p1 Ñ pFalse Ñ Falseqq ^

p1 Ñ p␣pFalse Ñ Falseqqq. The issue with this type is that it is equivalent to
1 Ñ ppFalse Ñ Falseq ^ ␣pFalse Ñ Falseqq » 1 Ñ 0. Consequently, the type
0 can be derived for pλy.pλx.xqq 42, which is unsound. This issue can be avoided
by forcing the domains explored for a λ-abstraction to be disjoint. By doing so,
the different codomains are never intersected, regardless of the value to which this
λ-abstraction is applied. This side condition is used in the proof of subject reduction
(Lemma 21, case [ÑE-N]).

Terminology.

Structural rules [Const-N] [Varλ-N] [ÑI-N] [ÑE-N]
[ˆI-N] [ˆE1-N] [ˆE2-N] [0-N] [P1-N] [P2-N]

Non-structural rules [Var_-N] [_-N] [ď-N]

The proofs of subject reduction and progress require an additional constraint on

72 Chapter 4. Declarative Type System

the shape of these derivations.

Definition 43 (Union-free derivation). A derivation D of Γ $: N e : t is said
union-free if, for every [_-N] node N of path π in D, π can be decomposed into
π1;π2 such that Dpπ1q is a [ÑI-N] node.

Roughly, a union-free derivation does not contain any [_-N] node except in the
subderivation of the premise of a [ÑI-N] node.

We now introduce a weaker version of canonical derivations, namely weakly-
canonical derivations, which will be preserved throughout the transformations de-
fined in the following proofs.

Definition 44 (Weakly-canonical derivation). A derivation D of Γ $: N e : t is
said weakly-canonical if and only if:

• The premises of every structural node except [ÑI-N] are union-free, and

• The definition premise of every [_-N] node is union-free.

In the lemmas and theorems below, most of the derivations we manipulate will
be weakly-canonical.

Lemma 15 (Inclusion of $: in $: N). Let Γ be an environment such that varspΓq Ď
VM , e an expression, and t a type. Let D be a derivation of Γ $: e : t. Then,
there exists a weakly-canonical derivation of Γ $: N e : t.

Proof. Using Theorem 1, we transform D into an instantiation-free canonical
derivation of Γ $: e : s for s Ÿ t (the fact that it is instantiation-free is a direct
consequence of varspΓq Ď VM).

We then show the following result: for any instantiation-free canonical deriva-
tion D of Γ $: e : s, and for any type t such that s Ÿ t, we can build a weakly-
canonical derivation of Γ $: N e : t. We proceed by induction on pspeq, |D|q for the
lexicographic order, where speq is the number of λ-abstractions in e.

We first build a weakly-canonical derivation of Γ $: N e : s:

• If the root of D is a [^] node, then all its premises must be [ÑI] nodes (because
D is an instantiation-free canonical derivation). Thus, we know that e ” λx.e1.
Let tpui,u1iquiPI be the pairs of domain and codomain used by those [ÑI] nodes.
We have s »

Ź

iPIpui Ñ u1iq. We consider a partition tvjujPJ of
Ž

iPI ui such
that @i P I. @j P J. ui^vj » 0 or vj ď ui (such a partition can easily be built
by induction on |tuiuiPI |). If

Ž

iPI ui » 0, we consider tvjujPJ “ t0u instead.

For each j P J , we do the following:

1. We pose Ij “ ti P I | vj ď uiu. Note that @i P IzIj . ui ^ vj » 0.

4.3. Type safety 73

2. For each i P Ij , we derive Γ, x : vj $: e
1 : u1i by applying the monotonicity

lemma (Lemma 1) on the derivation Γ, x : ui $: e
1 : u1i.

3. We intersect the resulting derivations with a [^] node, yielding a derivation
of Γ, x : vj $: e

1 :
Ź

iPIj
u1i.

4. We apply Theorem 1 on this new derivation in order to get a canonical
form derivation of Γ, x : vj $: e

1 : sj with sj Ÿ
Ź

iPIj
u1i.

5. We apply the induction hypothesis on it in order to build a weakly-
canonical derivation of Γ, x : vj $: N e1 :

Ź

iPIj
u1i.

We regroup the resulting derivations (for each j P J) in a [ÑI-N] node (it can
be verified that

Ź

jPJpvj Ñ
Ź

iPIj
u1iq »

Ź

iPIpui Ñ u1iq » s).

• The other cases are just straightforward applications of the induction hypoth-
esis.

We have a derivation of Γ $: N e : s with sŸ t. As varspΓq Ď VM , we know that
varspsq Ď VM and thus s ď t. Consequently, using a [ď-N] node, we can derive a
weakly-canonical derivation of Γ $: N e : t, which concludes the proof.
We now define the $: N ,Pr typing rules for programs:

[TopLevel-Expr-N]
Γ $: N e : t

Γ $: N ,Pr e : t

[TopLevel-Let-N]
Γ $: N ,Pr e : t Γ, x : t $: N ,Pr p : t

1

Γ $: N ,Pr letx = e ; p : t1

Definition 45 (Weakly-canonical derivation). A derivation D of Γ $: N ,Pr p : t is
said weakly-canonical if and only if every subderivation Γ1 $: N e1 : t1 it contains
is weakly-canonical.

Lemma 16 (Inclusion of $: Pr in $: N ,Pr). Let p be a program, and t a type. Let D
be a derivation of ∅ $: Pr p : t. Then, there exists a weakly-canonical derivation
of ∅ $: N ,Pr p : t.

Proof. We first apply Lemma 14 on D in order to derive a generalization-free
derivation D1 of ∅ $: Pr p : t.

Then, proceed with a straightforward structural induction on D1. For the case
of a [TopLevel-Expr] root, we apply Lemma 15 on the premise.

4.3.4 Subject reduction

In this section, we prove a subject reduction theorem for the type system $: N and
the parallel semantics ⇝P .

74 Chapter 4. Declarative Type System

Lemma 17 (Monotonicity). Let Γ be an environment, e an expression, and t

a type. Let D be a weakly-canonical derivation of Γ $: N e : t. Let Γ1 be an
environment such that Γ1 ď Γ. Then, there exists a weakly-canonical derivation
of Γ1 $: N e : t.

Proof. We show this result by structural induction on the proof tree D. When
the root is a [Var_-N] or [Varλ-N] node, we conclude by applying [ď-N]. All the
other cases are just straightforward applications of the induction hypothesis.

Lemma 18 (Substitution lemma). Let Γ be an environment, x a binding or
lambda variable, e, e1 two expressions, and s, t two types. Let D be a weakly-
canonical derivation of Γ,x : s $: N e : t, and A a weakly-canonical derivation of
Γ $: N e1 : s. Then, there exists a weakly-canonical derivation of Γ $: N ete1{xu : t.

Proof. One naive way to construct a derivation of Γ $: N ete1{xu : t is to replace in
D the [Varλ-N] or [Var_-N] nodes applied on x by A. However, this would not
necessarily yield a weakly-canonical derivation. In order to get a weakly-canonical
derivation, we will move the [_-N] nodes in A at the root of D.

We proceed by structural induction on A.
Depending on the root of A:

Axiom node We replace in D every [Varλ-N] or [Var_-N] node applied on x

by the axiom node, and return the resulting derivation.

Structural node We proceed similarly to the previous case: we replace in D

every [Varλ-N] or [Var_-N] node applied on x by A, and return the re-
sulting derivation. The derivation obtained is weakly-canonical: as A is
weakly-canonical and its root is structural, all [_-N] nodes contained in A
must be in the subderivation of the premise of a [ÑI-N] node.

[ď-N] Let us call A1 the subderivation of the premise of this [ď-N] node. Let t1

be the type derived by A1, and t the type derived by A. We replace in the
derivation D every environment Γ by the environment Γztpx, tqu,x : t1, and
replace every [Varλ-N] or [Var_-N] node applied on x by the following
subderivation:

[ď-N]

[Varλ-N/Var_-N]
Γ1 $: N x : t1

Γ1 $: N x : t

Let us call D1 the resulting derivation. We conclude by applying the induc-
tion hypothesis on D1 and A1.

4.3. Type safety 75

[_-N] We apply the following transformation to A (where e1 ” e11te
1
2{yu, and

ete1{xu ” etpe11te
1
2{yuq{xu ” ete11{xute

1
2{yu):

[_-N]

A1

Γ $: N e12 : s p@i P Iq

A1i

Γ, y : s^ ui $: N e11 : t

Γ $: N e11te
1
2{yu : t

Ó

[_-N]

A1

Γ $: N e12 : s p@i P Iq

D1i

Γ, y : s^ ui $: N ete11{xu : t

Γ $: N ete11{xute
1
2{yu : t

where D1i is obtained by applying the induction hypothesis on D and A1i

(the environment used by D can be extended with y : s^ ui using Lemma 17).

To prove subject reduction, we need to constrain the use of [_-N] nodes fur-
thermore: [_-N] nodes should not decompose the type of a value. We prove in
Lemma 20 that [_-N] nodes decomposing the type of a value are not really useful
and can be eliminated.

Definition 46 (Avoidable [_-N] node). Let D be a derivation. Let N be a [_-N]
node of D performing the substitution te1{xu. N is said avoidable if and only if
e1 is a value.

Definition 47 (Minimal derivation). A derivation is said minimal if it does not
contain any avoidable [_-N] node.

Lemma 19 (Atomicity of union-free value derivations). Let Γ be an environment,
and v a value. Let D be a union-free minimal weakly-canonical derivation of
Γ $: N v : s. Let tuiuiPI be a partition of 1. Then, there exists for some i P I a
union-free minimal weakly-canonical derivation of Γ $: N v : s^ ui.

Proof. We proceed by structural induction on D.

• If the root of D is a [ÑI-N] node, then v is a λ-abstraction λx.e, and s is a
conjunction of positive and negative arrows. Let us show that we can find i P I
such that s ^ ui ě s ^

Ź

jPJ ␣pvj Ñ v1jq and s ^
Ź

jPJ ␣pvj Ñ v1jq fi 0 for
some tpvj ,v1jqujPJ .

By contradiction, let us assume that it is not the case. Let us fix i P I. We

76 Chapter 4. Declarative Type System

consider a set of types tui,jujPJi such that s ^ ui »
dnf Ž

jPJi
s ^ ui,j , where

every ui,j is a conjunction of positive and negative arrows. We know that, for
every j P Ji, s ^ ui,j ğ s ^ v for every conjunction of negative arrows v such
that s^ v fi 0. This means that, for every j P Ji, there exists a positive arrow
vi,j Ñ v1i,j such that s ^ ui,j ď s ^ pvi,j Ñ v1i,jq and pvi,j Ñ v1i,jq ę s. Thus,
we have s^ ui ď s^ p

Ž

jPJi
vi,j Ñ v1i,jq with

Ž

jPJi
vi,j Ñ v1i,j ę s.

As this is true for every i P I, we have s ^
Ž

iPI ui ď s ^
Ž

iPIp
Ž

jPJi
vi,j Ñ

v1i,jq ę s, which contradicts the fact that tuiuiPI is a partition of 1. Thus, there
exists some i P I and tpvj ,v1jqujPJ such that s^ui ě s^

Ź

jPJ ␣pvj Ñ v1jq fi 0.

We can thus derive Γ $: N λx.e : s^
Ź

jPJ ␣pvj Ñ v1jq using a [ÑI-N] node, and
conclude by inserting a [ď-N] node at the root to derive Γ $: N λx.e : s^ ui.

• The other cases are straightforward.

Lemma 20. Let Γ be an environment, e an expression, and t a type. Let D
be a weakly-canonical derivation of Γ $: N e : t. Then, there exists a minimal
weakly-canonical derivation of Γ $: N e : t.

Proof. We proceed by structural induction on D, with an additional inductive in-
variant stating that if D is union-free, then the minimal weakly-canonical deriva-
tion we build is also union-free.

• If the root is an axiom ([Const-N], [Varλ-N] or [Var_-N]), then D is already
a minimal weakly-canonical derivation.

• If the root is an avoidable [_-N] node, we know that it is doing a substitution
etv{xu with v a value. We note tuiuiPI the partition of 1 used by this node.

We apply the induction hypothesis on the definition premise Γ $: N v : s in order
to get a union-free minimal weakly-canonical derivation A of Γ $: N v : s. By
applying Lemma 19 on A, we construct a (union-free) minimal weakly-canonical
derivation A1 of Γ $: N v : s^ ui for some i P I.

We consider the corresponding body premise B, Γ, x : s^ ui $: N e : t, and we
apply the induction hypothesis on it in order to get a minimal weakly-canonical
derivation B1 of Γ, x : s^ ui $: N e : t.

We can then apply Lemma 18 on B1, x and A1 to construct a minimal weakly-
canonical derivation of Γ $: N etv{xu : t (note that, as both B1 and A1 are
minimal, the derivation resulting from Lemma 18 is also minimal as it does not
introduce any new [_-N] node).

• The other cases are straightforward applications of the induction hypothesis.

4.3. Type safety 77

Now, that we have restricted the shape of derivations, we can prove the subject
reduction property.

Proposition 8. Let Γ be an environment, v a value, and τ a test type. Let D be
a derivation of Γ $: N v : τ . Then, we have the relation v P τ (see Figure 3.1 for
the definition of P).

Proof. Straightforward structural induction on D. Note that the case of λ-
abstractions is trivial as arrows in τ can only be 0 Ñ 1.

Proposition 8 will be used for proving the progress (Lemma 22), but we also
need it for the subject reduction, for treating the case of type-cases.

The next lemma is, in a sense, a more general version of the subject reduc-
tion property, where the reduction can happen under any context and is replicated
everywhere in the expression.

Lemma 21. Let Γ be an environment, e an expression, and t a type. Let D
be a minimal weakly-canonical derivation of Γ $: N e : t. Let e˝ and e1˝ be two
expressions such that e˝ ⇝J e1˝. Then, there exists a weakly-canonical derivation
of Γ $: N ete1˝{e˝u : t.

Proof. We proceed by structural induction on D.
If e contains no occurrence of e˝ (modulo α-renaming), the result is trivial.

Thus, let us assume that e contains at least one occurrence of e˝.
We denote by e1 the expression ete1˝{e˝u, and consider the root of D:

[Const-N] Impossible case (e cannot contain any reducible expression).

[Varλ-N] Impossible case (e cannot contain any reducible expression).

[Var_-N] Impossible case (e cannot contain any reducible expression).

[ď-N] By applying the induction hypothesis on the premise Γ $: N e : t1 (with
t1 ď t), we get a derivation of Γ $: N e1 : t1, thus we can derive Γ $: N e1 : t

by using a [ď-N] node.

[ÑI-N] We have e1 ” λx. peλte
1
˝{e˝uq for some expression eλ. For each i P I, we

can derive Γ, x : ui $: N eλte
1
˝{e˝u : ti by applying the induction hypothesis

on the premise Γ, x : ui $: N eλ : ti, and conclude by using a [ÑI-N] node.

[ˆI-N] We have e1 ” pe1te
1
˝{e˝u, e2te

1
˝{e˝uq for some e1 and e2. We apply the

induction hypothesis on the premises, as in the previous case.

78 Chapter 4. Declarative Type System

[ÑE-N] We have e ” e1e2 for some expressions e1 and e2. If e˝ is a subexpression
of e1 and/or e2, we conclude by applying the induction hypothesis on the
premises, as in the previous case.

Otherwise, e˝ ” e1e2 and thus the reduction e˝ ⇝J e1˝ uses the rule 4.1.
Consequently, we know that e˝ ” e ” pλx. eλqv for some expression eλ and
value v, and e1˝ ” e1 ” eλtv{xu.

We have the following premises:

1. Γ $: N λx. eλ : t1 Ñ t2 (with t2 » t)

2. Γ $: N v : t1

As D is a weakly-canonical derivation, we know that the premise (1) is
union-free. Thus, we can extract from (1) a collection of derivations tAiuiPI

of the judgments Γ, x : ui $: N eλ : si for i P I, such that @i, j P I. i ‰
j ñ ui ^ uj » 0, and such that

Ź

iPIpui Ñ siq ď t1 Ñ t2. If the partition
tuiuiPI does not cover 1, we extend it with the part 1zp

Ž

iPI uiq, yielding a
new partition tuiuiPI 1 with I 1 “ I Y tku (if tuiuiPI already covers 1, then
I 1 “ I).

By applying Lemma 19 on the premise (2) and the partition tuiuiPI 1 , we are
able to derive a minimal weakly-canonical derivation B of Γ $: N v : t1 ^ ui

for some i P I 1. We can deduce from Proposition 8 that t1 ^ ui fi 0
(otherwise we would have v P 0), and thus we have i P I. Using the fact
that

Ź

iPIpui Ñ siq ď t1 Ñ t2 and that all ui are disjoint, we deduce si ď t2.

By inserting a [ď-N] node at the root of B, we obtain a derivation B1 of
Γ $: N v : ui. Using the substitution lemma (Lemma 18) on Ai and B1, we
obtain a weakly-canonical derivation of Γ $: N eλtv{xu : si. By inserting a
[ď-N] node at its root, we obtain Γ $: N eλtv{xu : t2.

[ˆE1-N] We have e ” π1e1 for some expression e1. If e˝ is a subexpression of e1,
we conclude by applying the induction hypothesis on the premise.

Otherwise, e˝ ” π1e1 and thus the reduction e˝ ⇝J e1˝ uses the rule 4.2.
Consequently, we know that e˝ ” e ” π1pv1, v2q for some values v1 and v2,
and e1˝ ” e1 ” v1.

As D is a weakly-canonical derivation, we know that the premise Γ $: N
pv1, v2q : t1 ˆ t2 (with t1 » t) is union-free, and thus we can extract from
it a derivation A1 of Γ $: N v1 : s and a derivation A2 of Γ $: N v2 : s1 such
that s ˆ s1 ď t1 ˆ t2. We thus have s ď t1, as s1 cannot be 0 (this would
contradict Proposition 8).

Therefore, we can conclude this case by using a [ď-N] node with the premise
A1 in order to derive Γ $: N v1 : t1.

[ˆE2-N] Similar to the previous case.

4.3. Type safety 79

[_-N] We have e ” e1te2{xu for some expressions e1 and e2, and thus e1 ”
pe1te2{xuqte1˝{e˝u.

We have the following premises:

Definition premise Γ $: N e2 : s

Body premises @i P I. Γ, x : s^ ui $: N e1 : t

As D is minimal, we know that e2 cannot be a value. Also, we know that
e˝ does not contain x (otherwise there would be no occurrence of e˝ in e).
Consequently, e1˝ does not contain x neither, because a reduction step cannot
introduce a new free variable.

There are several cases:

• e˝ does not contain e2 and e2 does not contain e˝.
In this case, we have:
e1 ” pe1te2{xuqte1˝{e˝u ” pe1te

1
˝{e˝uqte2{xu. Thus, we can conclude

by keeping the definition premise of the [_-N] node and applying the
induction hypothesis on the body premises.

• e2 contains e˝.
In this case, we pose e12 “ e2te

1
˝{e˝u.

We have e1 ” pe1te2{xuqte1˝{e˝u ” pe1te
1
˝{e˝uqte

1
2{xu. We can derive

Γ $: N e12 : s by induction on the definition premise, and Γ, x : s^ui $: N
e1te

1
˝{e˝u : t for every i P I by induction on the body premises. Thus,

we can derive Γ $: N pe1te
1
˝{e˝uqte

1
2{xu : t using a [_-N] node.

• e˝ contains e2 as a strict subexpression.
Let te˝,iuiPI the set of subexpressions e2 of e1 that satisfy e2te2{xu ”α

e˝. As e2 is not a value, it can only appear in e˝ inside a λ-abstraction,
and/or inside a branch of a type-case: otherwise, e˝ would not be
reducible. Thus, we can deduce that, for every i P I, e˝,i ⇝J e1˝,i
for some e1˝,i. By numbering the elements of I from 1 to n, we have
e1 ” pe1te2{xuqte1˝{e˝u ” pe1te

1
˝,1{e˝,1u . . . te

1
˝,n{e˝,nuqte2{xu.

Consequently, we can conclude by keeping the definition premise of
the [_-N] node and applying the induction hypothesis n times on the
body premises (once for the reduction e˝,1 ⇝J e1˝,1, then once for the
reduction e˝,2 ⇝J e1˝,2, etc.).

[0-N] We have e ” (e1Pτ) ? e2 : e3 for some e1, e2 and e3. As values cannot have
the type 0 (Proposition 8), we know that e1 is not a value. Thus, e1 ”
(e1te

1
˝{e˝uPτ) ? e2te

1
˝{e˝u : e3te1˝{e˝u. We can derive Γ $: N e1te

1
˝{e˝u : 0 by

applying the induction hypothesis on the premise, and then we can derive
Γ $: N e1 : 0 by using [0-N].

[P1-N] We have e ” (e1Pτ) ? e2 : e3 for some e1, e2 and e3. There are three cases:

80 Chapter 4. Declarative Type System

e1 ” (e1te1˝{e˝uPτ) ? e2te
1
˝{e˝u : e3te1˝{e˝u We can easily conclude by apply-

ing the induction hypothesis on the premises.

e1 ” e2 The second premise, unchanged, allows us to conclude.

e1 ” e3 This case is impossible. Indeed, it implies that e1 is a value, and
as Γ $: N e1 : τ (first premise), we can deduce using Proposition 8 that
e1 P τ , which contradicts e⇝J e3.

[P2-N] Similar to the previous case.

Theorem 2 (Subject reduction). Let Γ be an environment, e an expression, and
t a type. Let D be a weakly-canonical derivation of Γ $: N e : t. Let e1 be an
expression such that e⇝P e1. Then, there exists a weakly-canonical derivation of
Γ $: N e1 : t.

Proof. Using Lemma 20 onD, we can build a minimal weakly-canonical derivation
of Γ $: N e : t.

Moreover, the root of the reduction step e⇝P e1 is a [κ] node, with its premise
being of the form e˝ ⇝J e1˝, and with e1 ” ete1˝{e˝u.

Thus, by using Lemma 21, we obtain Γ $: N e1 : t.

Corollary 1 (Subject reduction for programs). Let Γ be an environment, p and
p1 two programs such that p⇝P,Pr p

1, and t a type. Let D be a weakly-canonical
derivation of Γ $: N ,Pr p : t. Then, there exists a weakly-canonical derivation of
Γ $: N ,Pr p

1 : t.

Proof. Straightforward induction on D, using Theorem 2 and Lemma 18.

4.3.5 Progress

We now prove a progress theorem for the type system $: N and the parallel semantics
⇝P .

Usually, the progress property is proved for a closed expression, typeable under
an empty environment ∅. However, as the union-elimination rule introduces a
binding variable in the environment, we need to prove a more general property: the
typing environment does not need to be empty as long as no variable appear under
a reduction context in our expression.

Lemma 22. Let Γ be an environment, e an expression, and t a type. Let D be a
minimal derivation of Γ $: N e : t. If there is no evaluation context E and variable
x such that e ” Erxs, then either e is a value or De1. e⇝P e1.

4.3. Type safety 81

Proof. We proceed by structural induction on D.
We consider the root of D:

[Const-N] Trivial (e is a value).

[Varλ-N] Impossible case (contradict the hypotheses).

[Var_-N] Impossible case (contradict the hypotheses).

[ď-N] Trivial (by induction on the premise).

[ÑI-N] Trivial (e is a value).

[ˆI-N] We have e ” pe1, e2q for some expressions e1 and e2.

• If e1 is not a value, and as we have @E,x. e1 ı Erxs, we know by
applying the induction hypothesis that e1 can be reduced. Thus, e can
also be reduced under the evaluation context pr s, e2q.

• If e1 is a value, then we can apply the induction hypothesis on the
second premise (as e1 is a value, we know that @E,x. e2 ı Erxs).
It gives that either e2 is a value or it can be reduced. We can easily
conclude in both cases: if e2 is a value, then e is also a value, otherwise,
e can be reduced under the evaluation context pe1, r sq.

[ÑE-N] We have e ” e1e2 for some expressions e1 and e2, with Γ $: N e1 : sÑ t

and Γ $: N e2 : s.

• If e1 is not a value, and as we have @E,x. e1 ı Erxs, we know by
applying the induction hypothesis that e1 can be reduced. Thus, e can
also be reduced under the evaluation context r se2.

• If e1 is a value, we can apply Proposition 8 on it: as Γ $: N e1 : 0 Ñ 1,
it implies that e1 P 0 Ñ 1 and thus e1 ” λx. eλ for some eλ. Moreover,
we can apply the induction hypothesis on the second premise (as e1 is
a value, we know that @E,x. e2 ı Erxs). It gives that either e2 is a
value or it can be reduced. We can easily conclude in both cases: if e2
is a value, then e can be reduced using the rule 4.1, otherwise, e can
be reduced under the evaluation context e1r s.

[ˆE1-N] We have e ” π1e1 for some e1, with Γ $: N e1 : t ˆ s. By applying the
induction hypothesis on the premise, we know that e1 is either a value or
it can be reduced. If e1 can be reduced, then e can also be reduced under
the evaluation context π1r s. Otherwise, as Γ $: N e1 : 1 ˆ 1, we can apply
Proposition 8 on it, yielding e1 P 1ˆ 1. Thus, e1 ” pv1, v2q for some values
v1 and v2, and consequently e can be reduced using the rule 4.2.

[ˆE2-N] Similar to the previous case.

82 Chapter 4. Declarative Type System

[_-N] We have e ” e1te2{xu for some e1 and e2, with Γ $: N e2 : s and @i P
I. Γ, x : s^ ui $: N e1 : t. There are two cases:

• There exists an evaluation context E such that e1 ” Erxs. In this
case, we know that @E1,y. e2 ı E1rys, otherwise we would have
e ” ErE1ryss. Thus, we can apply the induction hypothesis on the
definition premise. It gives that either e2 is a value or it can be re-
duced. As D is minimal, e2 cannot be a value and thus e2 can be
reduced. Consequently, e can also be reduced under the evaluation
context E.

• There is no evaluation context E such that e1 ” Erxs. In this case, we
apply the induction hypothesis on one of the body premises. It gives
that either e1 is a value or it can be reduced. We can easily conclude
in both cases: if e1 is a value, then e is also a value, otherwise, e can
be reduced.

[0-N] We have e ” (e1Pτ) ? e2 : e3 for some e1, e2 and e3, with Γ $: N e1 : 0.
As values cannot have the type 0 (Proposition 8), we know that e1 is not
a value. Thus, by applying the induction hypothesis on the premise, we
know that e1 can be reduced. Consequently, e can be reduced under the
evaluation context (r sPτ) ? e2 : e3.

[P1-N] We have e ” (e1Pτ) ? e2 : e3 for some e1, e2 and e3, with Γ $: N e1 : τ . We
thus have e1 P τ (Proposition 8). By applying the induction hypothesis on
the first premise, we know that e1 is either a value or it can be reduced. If
e1 is a value, then e can be reduced using the rule 4.4. Otherwise, e1 can
be reduced, and thus e can also be reduced under the evaluation context
(r sPτ) ? e2 : e3.

[P2-N] Similar to the previous case.

Theorem 3 (Progress). Let e be an expression. Let t be a type. Let D be a weakly-
canonical derivation of ∅ $: N e : t. Then, either e is a value or De1. e⇝P e1.

Proof. Using Lemma 20 on D, we can build a minimal derivation of ∅ $: N e : t.
Moreover, we can deduce from ∅ $: N e : t that there is no evaluation context

E and variable x such that e ” Erxs. Thus, we can conclude using Lemma 22.

Corollary 2 (Progress for programs). Let p be a program. Let t be a type. Let
D be a weakly-canonical derivation of ∅ $: N ,Pr p : t. Then, either p is a value or
Dp1. p⇝P,Pr p

1.

4.3. Type safety 83

Proof. Straightforward induction on D, using Theorem 3.

Theorem 4 (Type safety for the parallel semantics). Let p be a program, and
t a type. Let D be a weakly-canonical derivation of ∅ $: N ,Pr p : t. Then, either
p⇝˚P,Pr v with ∅ $: N ,Pr v : t or p⇝8P,Pr.

Proof. Direct consequence of Corollary 1 and Corollary 2.

4.3.6 Type safety for the source semantics

The final step is to deduce a type safety theorem for the source semantics (Figure 3.1)
from the type safety theorem for the parallel semantics. The relation between these
two semantics is not trivial (they are not equivalent). For instance, the following
expression reduces to two distinct values depending on whether it is reduced using
⇝P or ⇝:

ppλx.xqpλx.xq, λy.pλx.xqpλx.xqq⇝˚P pλx.x, λy.pλx.xqq

ppλx.xqpλx.xq, λy.pλx.xqpλx.xqq⇝˚ pλx.x, λy.pλx.xqpλx.xqq

In addition, the type safety theorem for the parallel semantics (Theorem 4) uses
the type system $: N ,Pr, but we want to state our final type safety theorem for the
type system $: Pr. Although the type system $: Pr is included in the type system
$: N ,Pr (Lemma 16), the opposite is not true (in particular, it may be impossible to
derive negative arrow types for λ-abstractions using $: Pr, while it is possible using
$: N ,Pr).

A consequence is that, for a program p such that ∅ $: Pr p : t, we do not have
the guarantee that after reduction using the source semantics, the value v we get
(in the case where the expression does not diverge) satisfies ∅ $: Pr v : t, whereas it
is the case for reductions using the parallel semantics and the type system $: N ,Pr

(cf. Theorem 4). For instance, consider this reduction:

ppλx.xqpλx.xq, λy.pλx.xqpλx.xqq⇝˚Pr pλx.x, λy.pλx.xqpλx.xqq

For the program before reduction, we can derive the following type using $: Pr:

pp1 Ñ 0q ˆ p1 Ñ 1 Ñ 0qq _ p␣p1 Ñ 0q ˆ p1 Ñ ␣p1 Ñ 0qqq

This type can be derived by decomposing the type of both occurrences of
pλx.xqpλx.xq into 1 Ñ 0 and ␣p1 Ñ 0q using the [_] rule. However, after reduction,
the [_] rule cannot relate the type of the application in the right component of the
pair with the type of the left component. Thus, it becomes impossible to derive the
type above.

This example shows that the type safety as stated in Theorem 4 does not hold
when using the source semantics and the type system $: Pr. However, we can prove
a weaker version of it: instead of guaranteeing, after reduction of a non-diverging

84 Chapter 4. Declarative Type System

expression e of type t, that we obtain a value v of the same type t, it only states
that we obtain a value v satisfying v P τ for every test type τ ě t. In particular, if t
is a function type, it only guarantees that after reduction we get a value v P 0 Ñ 1
(or equivalently, that we get a λ-abstraction).

The idea of the proof of this result is based on the following observation: even
though a single step of the parallel semantics may perform more reductions than a
single step of the source semantics, these additional reductions will still happen in
a future step of the source semantics, at the exception of the reductions happening
under a λ-abstraction of the final value (because the source semantics does not
perform reduction under λ-abstractions). Though, it is not an issue for the weaker
version of the type safety theorem, as it does not give any guarantee about the body
of the λ-abstractions contained in the final value.

In order to relate the parallel semantics with the source semantics, we introduce
again another reduction semantics ⇝C on expressions. This semantics ⇝C can
perform a reduction ⇝J under any context C (not just an evaluation context):

Definition 48 (Reduction under any context). A reduction step ⇝C is a top-
level reduction step ⇝J (see Figure 4.3) that can happen under any context:

C ::“ r s | λx.C | C e | e C | pC, eq | pe, Cq | πiC
| (CPτ) ? e : e | (ePτ) ? C : e | (ePτ) ? e : C

e⇝J e
1

Cres⇝C Cre1s

Definition 49 (Subcontext). A context C1 is a subcontext of C2, noted C1 ĺ C2,
if and only if there exists a context C11 such that C2 ” C1rC11s.

Lemma 23. For every expression e1 and e3, if we have a chain e1 ⇝˚C e3 such
that at least one of the reduction steps happens under an evaluation context, then
there exists an expression e2 such that e1 ⇝ e2 and e2 ⇝˚C e3.

Proof. Let e1 and e4 be two expressions such that e1 ⇝˚C e4, where at least one
of the reduction steps happen under an evaluation context.

Let us consider the first reduction step e2 ⇝C e3 happening under an evalu-
ation context. We have e1 ⇝˚C e2 (with no reduction step happening under an
evaluation context) and e3 ⇝˚C e4. Moreover, we have e2 ” Ere12s and e3 ” Ere13s

for some evaluation context E and expressions e12 and e13 such that e12 ⇝J e13.
No reduction step in e1 ⇝˚C e2 happen under a context C such that C ĺ E:

otherwise, it would also be an evaluation context, contradicting the fact that
e2 ⇝C e3 is the first reduction step happening under an evaluation context. Con-
sequently, we can reverse in E and e12 the reduction steps happening in e1 ⇝˚C e2
(one after the other, in reverse order):

4.3. Type safety 85

• If a reduction step happens under a context C such that E ĺ C, it only
involves e12, we can thus apply the reverse rewriting to e12. After that, the
expression we get is still reducible at top-level, as the reduction step that
has been reversed cannot happen under an evaluation context (no reduction
step in e1 ⇝˚C e2 can happen under an evaluation context).

• Otherwise, if a reduction step happens under a context C such that C ĺ E

and E ĺ C, it only involves E, we can thus apply the reverse rewriting to
E. After that, the new context we get is still an evaluation context, as the
reduction step that has been reversed cannot happen under an evaluation
context (no reduction step in e1 ⇝˚C e2 can happen under an evaluation
context).

After this reversing process, we get a new evaluation context E1 and expression
e11 such that e1 ” E1re11s and e11 ⇝J e22 for some e22 such that E1re22s⇝˚C Ere

1
2s.

Consequently, we have e1 ” E1re11s ⇝ E1re22s, and E1re22s ⇝
˚
C Ere

1
2s ” e3 ⇝˚C

e4, which concludes the proof.

Lemma 24. For every expression e1, e2 and e3, if e1 ⇝˚C e2 ⇝P e3, then there
exists an expression e11 such that e1 ⇝ e11 ⇝

˚
C e3.

Proof. The step e2 ⇝P e3 can be decomposed into several⇝C steps with at least
one happening under an evaluation context. Thus, this lemma is an immediate
consequence of Lemma 23 applied on the chain e1 ⇝˚C e2 ⇝

˚
C e3.

Lemma 25. For every expression e and value v, if e⇝˚C v, then either e⇝8 or
there exists a value v1 such that e⇝˚ v1 ⇝˚C v.

Proof. If e is a value, this lemma is trivial. Thus, let us assume that e is not
already a value. Then, there must be at least one step in e ⇝˚C v that hap-
pens under an evaluation context (it would not be possible for v to be a value
otherwise). We can thus apply Lemma 23 successively, starting on e ⇝˚C v and
continuing until the remaining e1 ⇝˚C v chain is such that e1 is a value. If this
process terminates, it builds a chain e ⇝˚ v1 with v1 ⇝˚C v, otherwise it builds
e⇝8.

Note that Lemma 25 could be strengthened into e⇝˚C v ñ Dv1. e⇝˚ v1 ⇝˚C v by
showing that e⇝8ñ e ⇝˚C v, but this is not required by our proof of type safety.

Lemma 26. For every expression e1, e2, and value v, if e1 ⇝˚C e2 ⇝
˚
P v then

there exists v1 such that e1 ⇝˚ v1 ⇝˚C v or e1 ⇝8.

86 Chapter 4. Declarative Type System

Proof. By induction on the number of steps in e2 ⇝˚P v, we prove using Lemma 24
that e1 ⇝˚ e1 ⇝˚C v for some e1. Then, we conclude by applying Lemma 25 on
e1 ⇝˚C v.

Lemma 27. For every expression e1 and e2, if e1 ⇝˚C e2 ⇝
8
P then e1 ⇝8.

Proof. We can arbitrarily extend a chain e1 ⇝ . . . using Lemma 24.

The semantics ⇝C is extended into a semantics ⇝C,Pr for programs, with an
extended context allowing to perform a reduction under any top-level definition of
the program:

CPr ::“ rs | letx = rs ; p | letx = e ; CPr

e⇝J e
1

CPrrCress⇝C,Pr CPrrCre1ss

Lemma 28. For every program p1, p2, and value v, if p1 ⇝˚C,Pr p2 ⇝
˚
P,Pr v, then

there exists v1 such that p1 ⇝˚Pr v
1 ⇝˚C,Pr v or p1 ⇝8Pr.

Proof. Straightforward induction on the number of top-level definitions in p2,
using Lemma 26 (note that p1 and p2 must have the same number of top-level
definitions as p1 ⇝˚C,Pr p2).

Lemma 29. For every program p1 and p2, if p1 ⇝˚C,Pr p2 ⇝
8
P,Pr, then p1 ⇝8Pr.

Proof. Straightforward induction on the number of top-level definitions in p2,
using Lemma 27 (note that p1 and p2 must have the same number of top-level
definitions as p1 ⇝˚C,Pr p2).

Lemma 30. For every value v1 and v2 such that v1 ⇝˚C v2, if v2 P τ , then v1 P τ .

Proof. As v1 is a value, every reduction step in v1 ⇝˚C v2 can only happen under
a λ-abstraction. Given that the P relation ignores the body of λ-abstractions (for
every x and e, pλx.eq P 0 Ñ 1), none of the reduction steps in v1 ⇝˚C v2 can
change the relation ¨ P τ .

Theorem 5 (Type safety for the source semantics). For every program p and
test type τ , if ∅ $: Pr p : τ , then either p⇝˚Pr v for some v P τ or p⇝8Pr.

4.3. Type safety 87

Proof. Straightforward combination of Lemma 16, which allows building a
weakly-canonical derivation of ∅ $: N ,Pr p : τ , of the type safety for the paral-
lel semantics (Theorem 4), and of Lemmas 28 and 29.

In the case where we get p ⇝˚Pr v for some value v such that Dv1. pv ⇝˚C v
1

and ∅ $: N ,Pr v
1 : τq, we can deduce ∅ $: N v1 : τ , then v1 P τ using Proposition 8,

and finally v P τ using Lemma 30.

Chapter 5

Algorithmic Type System

Contents
5.1 Maximal Sharing Canonical forms 90

5.1.1 Canonical forms . 90

5.1.2 Maximal Sharing Canonical forms 94

5.2 Annotations and algorithmic type system 101

5.3 Equivalence with the declarative type system 107

5.3.1 Soundness . 107

5.3.2 Completeness . 109

The declarative type system given in Chapter 4 is expressive, combining the
power of intersection types, union types, and parametric polymorphism. However,
it is non-algorithmic. How can we define an algorithm that infers whether a given
expression can be typed in this system?

The first step to answer this question is to identify the different sources of non-
determinism in the declarative type system. Rules such as union-elimination and
intersection-introduction are easy to understand, but they do not easily lend them-
selves to an implementation. There are two issues that make the type system non-
algorithmic.

First, the type system is not syntax directed: several typing rules can be applied
for the same syntactic expression. This is due to the non-structural rules that can
be applied on any expression: [ď], [Inst], [_], and [^]. We can solve this issue
by constraining the use of non-structural rules, following the structure of canonical
typing derivations (Section 4.2). The typing rules [ď] and [Inst] are only necessary
when a destructor is applied (application, projection, type-case), and thus they can
be embedded in the corresponding structural rules. In order to constrain the use of
[_] rules, however, we need to give more structure to our expressions: this is done
in Section 5.1, which introduces a canonical form for expressions.

The second source of non-determinism is due to the fact that some typing rules
are non-analytic, meaning that some inputs of their premises (for instance, a type
added to the typing environment of a premise) cannot be determined by the inputs
of their conclusion. For instance, the type decomposition tuiuiPI appearing in the
premises of the [_] rule does not appear in its conclusion, and thus we have to
“guess” it. This second issue is solved in Section 5.2 by adding to our algorithmic

90 Chapter 5. Algorithmic Type System

type system an additional input: an annotation tree that specifies which value to
give to these non-analytic parameters.

In order to arrive to an effective implementation of our type system, we thus
proceed in two steps: piq in this chapter, we define an algorithmic type system
following the ideas discussed above, and piiq in Chapter 6, we define a reconstruction
algorithm that aims to reconstruct the annotation tree used by the algorithmic type
system.

5.1 Maximal Sharing Canonical forms

One thing that makes the declarative type system non-algorithmic is the fact that
it is not syntax-directed. A type system is syntax-directed when the syntax of the
expression we want to type indicates which rule to apply. This is the case when the
type system only has structural rules, but in our case, we also have non-structural
rules: [^], [Inst], and [ď].

The two rules [ď] and [Inst] can easily be eliminated, as suggested by the struc-
ture of canonical typing derivations (Section 4.2), by embedding them in destructor
rules: [ÑE], [ˆE1], [ˆE2], [0], [P1], and [P2].

The two other rules, [_] and [^], cannot be eliminated in this way. However,
for typing an expression e, the normalization lemmas of Section 4.2 suggest that [_]
rules only need to decompose the type of each subexpression of e once. Following
this idea, this section aims to make the [_] rule syntax-directed by introducing a
new syntactic construction called binding for our expressions. The idea is to make
the [_] rule to apply only on these bindings, thus turning it into a structural rule.
Expressions that use this new binding syntax are called canonical forms.

Two other constraints suggested by the normalization lemmas are that a [_] rule
decomposing the type of e1 should appear in the derivation tree as close of the root as
possible, and that it should decompose the type of all the occurrences of e1 at once.
Our canonical forms are thus further refined to match these constraints, yielding
the notion of Maximal Sharing Canonical (MSC) form, presented in Section 5.1.2.

5.1.1 Canonical forms

As stated above, we need a syntactic way to determine when to apply the [_] rule,
and which subexpression to split. In order to achieve this, we represent our terms
with a syntax called Maximal Sharing Canonical (MSC) form.

Definition 50 (Canonical forms and atoms). Canonical forms and atomic ex-
pressions (or atoms) are finite terms produced by the following grammar:

Atomic expressions a ::“ c | x | λx.κ | px, xq | xx | πix | (xPτ) ? x : x
Canonical forms κ ::“ x | bind x = a inκ

5.1. Maximal Sharing Canonical forms 91

For convenience, we use the metavariable η to range over both atoms and canon-
ical forms.

Canonical forms, ranged over by κ, are binding variables (noted x, y, or z) pos-
sibly preceded by a list of definitions (from binding variables to atoms). Atoms
are either a variable from a λ-abstraction (noted x, y, or z), or a constant, or a
λ-abstraction whose body is a canonical form, or any other expression in which
all proper subexpressions are binding variables. Canonical forms are similar to
A-Normal Forms (Sabry and Felleisen, 1992), an intermediate representation of pro-
grams where arguments of functions can only be constants or variables, but are
even more restrictive: every constructor and destructor (like an application) can
only involve binding variables.

Notice the use of distinct sets of variables to represent λ-abstracted variables
(x, y, or z) and bind-abstracted ones (x, y, or z). The reason is that we want each
subexpression on which we might want to apply the union-elimination rule to be
defined in a separate binding. As we could decide to apply the union-elimination
rule on occurrences of a single lambda variable, we have to associate a binding to
each lambda variable in our expression, but without allowing arbitrary aliasing as
it would allow for more complex canonical forms with no benefit. Distinguishing
binding variables from lambda variables solves this issue: a binding variable can
then be associated to any subexpression, including a single lambda variable, but
not to another binding variable, thus preventing arbitrary aliasing.

Definition 51 (Form context). A form context CF is a finite term produced by
the following grammar:

Form context CF ::“ r s | bind x =λx.CF inκ | bind x = a in CF

Definition 52 (Atom context). An atom context CA is a finite term produced
by the following grammar:

Atom context CA ::“ bind x = r s inκ | bind x = a in CA | bind x =λx.CA inκ

Definition 53 (Free variables). The set of free variables of a canonical form κ

92 Chapter 5. Algorithmic Type System

(resp. atom a), noted fvpκq (resp. fvpaq), is inductively defined as follows:

fvpcq “ ∅
fvpxq “ txu

fvpλx.κq “ fvpκqztxu

fvpx1x2q “ tx1, x2u

fvppx1, x2qq “ tx1, x2u

fvpπixq “ txu i “ 1, 2

fvp(x1Pτ) ? x2 : x3q “ tx1, x2, x3u

fvpxq “ txu

fvpbind x = a inκ q “ fvpaq Y fvpκqztxu

A canonical form can be transformed into an expression of the source language
using the unwinding operator r.s that basically inlines bindings:

Definition 54 (Unwinding). The unwinding of a canonical form κ, noted rκs,
is the expression inductively defined as follows:

rcs “ c

rxs “ x

rλx.κs “ λx.rκs

rx1x2s “ x1x2
rpx1, x2qs “ px1, x2q

rπixs “ πix i “ 1, 2

r(xPτ) ? x1 : x2s “ (xPτ) ? x1 : x2
rbind x = a inκ s “ rκstras{xu

rxs “ x

Note that if fvpκqXVarsB “ ∅, then rκs is a ground expression (cf. Definition 20).
The inverse direction, that is, producing from a source language expression a

canonical form that unwinds to it, is also straightforward. For that, we introduce
binding contexts, similar to the definition contexts from Chapter 4 (Definition 26),
but this time with definitions that are atoms:

Definition 55 (Binding context). A binding context B is an ordered list of
mappings from binding variables to atoms. Each mapping is written as a pair
px, aq. We note these lists extensionally by separating elements by a semicolon,
that is, px1, a1q; . . . ; pxn, anq and use ε to denote the empty list.

5.1. Maximal Sharing Canonical forms 93

Definition 56 (Application of binding context to an expression). The application
of a binding context B to an expression e, noted eB, is the expression inductively
defined as follows:

eε “ e

epB; px, aqq “ petras{xuqB

Definition 57 (Application of a binding context to an expression order). Let
Ď be an expression order. Let B be a binding context. The relation ĎB is the
expression order defined by e1 ĎB e2 ô e1B Ď e2B.

We define an operation termpB, κq which takes a binding context B and a canon-
ical form κ and constructs the canonical form containing the bindings in B and
ending with κ:

Definition 58. Let B be a binding context. Let κ be a canonical form. The
canonical form termpB, κq is defined inductively as follows:

termpε, κq “def κ

termpppx, aq;Bq, κq “def bind x = a in termpB, κq

We can now define the function JeK that transforms an expression e into a pair
pB, xq formed by a binding context B and a binding variable x such that termpB, xq
is a canonical form whose unwinding is e.

Definition 59. Let e be an expression. We define JeK as the pair defined induc-
tively as follows, where x˝ is a fresh binding variable:

JxK “ pε, xq

JcK “ ppx˝, cq, x˝q

JxK “ ppx˝, xq, x˝q

Jλx.eK “ ppx˝, λx.termJeKq, x˝q

JπieK “ ppB; px˝, πixqq, x˝q where pB, xq “ JeK

Je1e2K “ ppB1;B2; px˝, x1x2qq, x˝q where pB1, x1q “ Je1K, pB2, x2q “ Je2K

Jpe1, e2qK “ ppB1;B2; px˝, px1, x2qqq, x˝q
where pB1, x1q “ Je1K, pB2, x2q “ Je2K

J(ePτ) ? e1 : e2K “ ppB;B1;B2; px˝, (xPτ) ? x1 : x2qq, x˝q
where pB, xq “ JeK, pB1, x1q “ Je1K, pB2, x2q “ Je2K

94 Chapter 5. Algorithmic Type System

Proposition 9. For every expression of the source language e, rtermpJeKqs ” e.

Proof. Straightforward structural induction on e.

A canonical form κ ensures, by its syntax, that every subexpression of rκs is
associated to (at least) one binding variable. However, different occurrences of the
same subexpression could be associated to different binding variables. Consequently,
for each expression of the source language, there are several canonical forms that
unwind to it. For our algorithmic type system we need to associate each source
language expression to a unique canonical form: the Maximal Sharing Canonical
(MSC) form.

5.1.2 Maximal Sharing Canonical forms

Maximal Sharing Canonical (MSC) forms are introduced to drastically reduce the
range of possible applications of the union-elimination rule, according to the normal-
ization lemmas of Section 4.2. The characteristic of MSC forms is that they encode
expressions and preserve typeability in the sense that every expression is typeable
if and only if its unique MSC form is typeable.

We define a congruence on canonical forms and atoms:

Definition 60 (Canonical equivalence). We denote by ”κ the smallest con-
gruence on canonical forms and atoms that is closed by α-conversion and such that

bind x1 = a1 in bind x2 = a2 inκ ”κ bind x2 = a2 in bind x1 = a1 inκ

if x1Rfvpa2q, x2Rfvpa1q

In other words, two canonical forms are ”κ-equivalent if they are the same, up
to α-equivalence and re-ordering of independent bindings.

Proposition 10. If κ ”κ κ
1, then rκs ”α rκ1s.

Proof. If a reordering, as defined in Definition 60, applies at top-level on the
expression bind x1 = a1 in bind x2 = a2 inκ , the unwinding remains unchanged: as
x1 R fvpa2q and x2 R fvpa1q, we have κta1{x1uta2{x2u ” κta2{x2uta1{x1u.

The general case follows from the observation that @CF , κ1, κ2. rκ1s ”α rκ2s ñ

rCF rκ1ss ”α rCF rκ2ss.

Now, we can define Maximal Sharing Canonical (MSC) forms:

5.1. Maximal Sharing Canonical forms 95

Definition 61 (MSC forms). A Maximal Sharing Canonical (MSC) form is (any
canonical form α-equivalent to) a canonical form κ such that:

1. Maximal sharing: if bind x1 = a1 inκ1 and bind x2 = a2 inκ2 are distinct
subexpressions of κ, then a1 ”κ a2, and

2. Extrusion of bindings: if λx.κ1 is a subexpression of κ and bind y = a inκ2
a subexpression of κ1, then fvpaqĘ fvpλx.κ1q, and

3. No useless binding: if bind x = a inκ1 is a subexpression of κ, then x P fvpκ1q.

The first two properties of Definition 61 are important since they ensure that an
expression of the source language is typeable if and only if it is the unwinding of a
typeable MSC form.

For the first property, it states that distinct variables denote different definitions.
It ensures the maximal sharing of common subexpressions in the source language,
where common subexpressions designate sets composed by different occurrences of
subexpressions that are equal (in our case, α-convertible). In other terms, if we
start from a source language term and put it into a MSC form, then all common
subexpressions occurring in it are bound by the same binding variable. For in-
stance, if we start from the term pf3, f3q, then its MSC form is (α-equivalent to)
bind x = 3 in bind y = fx in bind z = py, yq in z: both occurrences of f3 are bound to y.

Intuitively, this first property is necessary because regrouping equivalent subex-
pressions together increases the typeability of a term as it better captures correlation
between these two subexpression: if we can type a term in which two distinct vari-
ables bind the same subexpression, then the same term in which this subexpression
is bound by a single variable can also be typed by assigning to the unique variable
the intersection of the types of the distinct variables, but the converse does not hold.
This condition is similar to the condition on canonical form derivations, in Defini-
tion 25, imposing [_] rules to substitute all occurrences of the subexpression at issue
(in other words, two occurrences of the same subexpression must be substituted by
the same [_] rule).

The second property of Definition 61 requires bindings to be extruded from λ-
abstractions whenever possible. This is justified by the fact that outer bindings may
produce better types. For instance, consider the expression bind x = a inλy. x , where
a is an expression that can be either an integer or a Boolean. This expression can be
typed with p1 Ñ Intq_p1 Ñ Boolq. However, for the expression λy. pbind x = a in x q
which has the same unwinding as the previous one, the most precise type one can
deduce is 1 Ñ pInt _ Boolq, which is strictly larger (i.e., less precise) than p1 Ñ
Intq _ p1 Ñ Boolq. In the definition of canonical form derivations (Section 4.2),
this condition corresponds to the notion of well-positioned [_] node (Definition 31),
which basically states that a [_] rule must be applied as soon as possible.

The third condition of Definition 61 states that there is no useless binding (the
bound variable must occur in the body of the bind). This is important because

96 Chapter 5. Algorithmic Type System

it ensures that given a source language expression e there exists a unique (modulo
α-conversion and reordering of independent bindings) MSC form whose unwinding
is e. In other words, given an expression e of the source language, all its MSC forms
(i.e., all MSC forms whose unwinding is e) are equivalent (modulo ”κ).

Proposition 11 (Equivalence of MSC forms). Let κ1, κ2 be two MSC forms. If
rκ1s ”α rκ2s, then κ1 ”κ κ2.

Proof. We show that κ2 can be transformed into κ1 just with α-renaming and
reordering of independent bindings, as specified in the definition of ”κ (Defini-
tion 60).

In this proof, we represent partially unwound canonical forms by a pair pB, eq,
where B is a binding context and e an expression. With this representation, the
unwinding of pB, eq is eB, but for clarity we can also use the notation rpB, eqs.

Let pB1, x1q be the representation of κ1, with B1 representing its top-level
definitions and x1 its final binding variable, and pB2, x2q be the representation of
κ2. Formally, we have termpB1, x1q ” κ1 and termpB2, x2q ” κ2.

As rκ1s ”α rκ2s, we have rpB1, x1qs ”α rpB2, x2qs. We can assume without
loss of generality that x1 “ x2 “ x (otherwise we use α-renaming on κ2), and thus
rpB1, xqs ” rpB2, xqs.

Now, we prove the property below, from which Proposition 11 can be deduced.
Let B1 and B2 be two binding contexts. Let e be an expression such that:

• rpB1, eqs ” rpB2, eqs, and

• The body of λ-abstractions in B1 and B2 are in MSC form (Definition 61),
and

• Both B1 and B2 satisfy the following properties (corresponding to the MSC
form properties applied to the top-level definitions), written here for a bind-
ing context B:

1. for every distinct px1, a1q, px2, a2q P B, we have a1 ”κ a2

2. for every px, λz.κq P B, every binding bind y = a inκ1 in κ is such that
fvpaq Ę fvpλz.κq

3. if px, aq P B, then x is a free variable of one of the next definitions in
B or of e

Then, we can transform B2 into B1 just with α-renaming of binding variables not
in fvpeq, reordering of independent definitions, and replacement of an atom by a
”κ-equivalent one.

We prove this property by induction on the total number of atoms appearing
in B1 (by counting top-level atoms as well as, for each top-level atom that is a
λ-abstraction, the atoms it contains).

5.1. Maximal Sharing Canonical forms 97

The base case (B1 “ ε) is trivial: as rpB2, eqs ” rpB1, eqs ” rpε, eqs ” e, we
deduce with Property 3 that B2 “ ε.

For the inductive case (B1 ‰ ε), we consider, among the binding variables
defined in B1 and B2, a binding variable that unwinds to a maximal expression
for the subexpression order. We note x such a binding variable.

We know that no other definition in B1 or B2 can use the binding variable x
as it would contradict its maximality. We also know that e contains x (Property
3) and thus both B1 and B2 contain a definition for x. We move the definition of
x at the end in both B1 and B2 (we can do so because no other definition in B1

and B2 can use x).
We pose B1 “ B11 ; px, a1q and B2 “ B12 ; px, a2q. As rpB1, eqs ” rpB2, eqs, we

can deduce that rpB11, ra1sqs ” rpB12, ra2sqs, and thus a1 and a2 are atoms of the
same kind. We now show that we can obtain a1 ” a2 just by α-renaming binding
variables not in fvpeq and by reordering independent bindings in a1 and a2.

• If a1 and a2 are atoms that are not λ-abstractions and that do not contain
any binding variable (this is the case of constants and lambda variables),
we directly have a1 ” a2.

• If a1 and a2 are atoms that are not λ-abstractions and that contain only one
binding variable (this is the case of projections), we can α-rename binding
variables in B2 so that a1 ” a2.

• If a1 and a2 are atoms that are not λ-abstractions and that contain two
binding variables x and y (this is the case of applications and pairs), we
consider two cases:

– If rpB11, xqs ”α rpB11, yqs, we necessarily have x “ y. Indeed, if x ‰ y,
then we can find two distinct definitions in B11 that share the same
atom modulo ”κ, contradicting Property 1. The same reasoning can
be done for a2, and thus we get that both a1 and a2 contain the same
binding variable twice. Thus, we can α-rename binding variables in
B2 so that a1 ” a2.

– Otherwise, x and y must be different, and the same applies to a2. Thus,
we can α-rename binding variables in B2 so that a1 ” a2.

• If a1 and a2 are type-cases (containing 3 binding variables), we proceed
similarly to the previous case to obtain a1 ” a2.

• In the case where a1 and a2 are λ-abstractions, let’s say λx. κ1 and λx. κ2,
we note pBx1 , x1q and pBx2 , x2q the representations of κ1 and κ2 respectively.
As κ1 is in MSC-form, we know that pBx1 , x1q satisfies Properties 1, 2 and
3. Moreover, according to Property 2, we know that every atom a in Bx1
is such that fvpaq Ę fvpλx.κ1q, and thus the atoms in Bx1 and those in B11
are distinct modulo ”κ. Thus, ppB11;Bx1q, x1q satisfies Properties 1, 2 and

98 Chapter 5. Algorithmic Type System

3. Similarly, ppB12;Bx2q, x2q satisfies Properties 1, 2 and 3, and we have
rppB11;Bx1q, x1qs ” rppB12;Bx2q, x2qs.

Thus, we can apply the induction hypothesis on pB11;Bx1q, pB12;Bx2qtx1{x2u
and x1. It gives us that pB11;Bx1q and pB12;Bx2q are equivalent modulo
reordering of the definitions, α-renaming of binding variables and ”κ-
transformation of the atoms.

By using again the fact that every atom a in Bx1 is such that fvpaq Ę
fvpλx.κ1q, we deduce that they all unwind to an expression containing x,
unlike atoms in B11. Similarly, every atom a in Bx2 unwinds to an expression
containing x, unlike atoms in B12. Thus, we can deduce that Bx1 and Bx2
are equivalent modulo reordering of the definitions, α-renaming and ”κ-
transformation of the atoms. Thus, we can α-rename binding variables in
B2 and ”κ-transform some of its atoms so that Bx1 ” Bx2 , and thus so that
a1 ” a2.

In any case, we get a1 ” a2, thus the last definition of B1 is the same as the
last definition of B2. The same can be proven for the previous definitions by using
the induction hypothesis on B11, B12 and eta1{xu.

Definition 62. The MSC form of an expression e, noted MSCpeq, is the unique
MSC form (up to ”κ-equivalence) whose unwinding is e.

It is easy to transform a canonical form into a MSC form that has the same
unwinding. This can be done by applying the rewriting rule 99K defined in Figure 5.1.

bind x1 = a1 in
bind x2 = a2 inκ

99K˝ bind x1 = a1 inκtx1{x2u if a1 ”κ a2 (5.1)

bind x = a inκ 99K˝ κ if x R fvpκq (5.2)

bind x =λy.p
bind z = a inκ˝ q

inκ

99K˝
bind z = a in
bind x =λy.κ˝ inκ

if y R fvpaq, z R fvpκq (5.3)

κ1 99K κ2 if Dκ11 s.t. κ11 ”κ κ1 and κ11 99K˝ κ2 (5.4)

Figure 5.1: Canonical to MSC rewriting rules

Rule (5.1) implements the maximal sharing: if two variables bind atoms with
the same unwinding (modulo α-conversion), then the variables are unified. Rule
(5.2) removes useless bindings. Rule (5.3) extrudes bindings from abstractions of
variables that do not occur in the argument of the binding. Rule (5.4) applies the
previous rules modulo the canonical equivalence: in practice it applies the swap

5.1. Maximal Sharing Canonical forms 99

of binding defined in Definition 60 as many times as it is needed to apply one of
the other rules. These rules can be applied under any context. They are confluent
(modulo ”κ) and normalizing, as proved below.

Proposition 12. If κ 99K κ1, then rκs ”α rκ1s.

Proof. Similar to Proposition 10.

Proposition 13 (Normalization). There is no infinite chain κ1 99K κ2 99K ¨ ¨ ¨

Proof. For an atom context CA, we define λ-depthpCAq inductively as follows:

λ-depthpbind x = r s inκ q “ 0

λ-depthpbind x = a in CA q “ λ-depthpCAq
λ-depthpbind x =λx.CA inκ q “ λ-depthpCAq ` 1

Let n be the maximal λ-depth of atom contexts in κ1:

n “
def max

CA s.t. Da. CAras”κ1

λ-depthpCAq

Let Nκpiq be the number of atom contexts of depth i in the canonical form κ:

Nκpiq “
def |tCA | Da.CAras » κ and λ-depthpCAq “ iu|

Let Spκq be the following n-tuple:

Spκq “def
pNκpnq, Nκpn´ 1q, . . . , Nκp0qq

For every chain κ1 99K κ2 99K ¨ ¨ ¨ , the sequence Spκ1q, Spκ2q, . . . is strictly
decreasing with respect to the lexicographic order. Thus, κ1 99K κ2 99K ¨ ¨ ¨
cannot be infinite.

Proposition 14. If κ 99K (i.e., no 99K rule apply on κ), then κ is a MSC form.

Proof. We assume κ 99K and show that all 3 MSC properties are satisfied.
The property 3 (no unused bindings) is trivially verified: any binding that

does not satisfy this property can directly be eliminated with the rule 5.2. As the
rule 5.2 does not apply, this property must be satisfied.

Now, we focus on the property 2 (extrusion of bindings). We assume that
there exists a subexpression λx. κ1 of κ and a subexpression bind y = a inκ2 of κ1
such that fvpaq Ď fvpλx. κ1q. We know that a does not depend on x, otherwise
x would be in fvpaq and not in fvpλx. κ1q. Thus, we can reorder the binding y

100 Chapter 5. Algorithmic Type System

(rule 5.4) in the first position of its innermost containing λ-abstraction, and then
apply the rule 5.3 on it, which contradicts κ 99K. Consequently, the property 2
is satisfied.

Finally, we show that the property 1 (sharing) is also satisfied. We assume
that there are two distinct bindings bind x1 = a1 in . . . and bind x2 = a2 in . . . such
that a1 ”κ a2. As the property 2 is satisfied, and as fvpa1q “ fvpa2q, we know
that these two bindings are in the same λ-abstraction. Thus, we can reorder them
(rule 5.4) to be the one next to the other so that the rule 5.1 is applicable, which
contradicts κ 99K. Thus, the property 1 is satisfied.

Proposition 15 (Confluence). Let κ1, κ2, and κ12 be three canonical forms such
that κ1 99K˚ κ2 and κ1 99K˚ κ12. Then, there exists κ3 and κ13 such that κ2 99K˚

κ3, κ12 99K
˚ κ13, and κ3 ”κ κ

1
3.

Proof. Immediate consequence of Proposition 13 (normalization), Proposition 12
(preservation of r.s), Proposition 14 (99K implies MSC form), and Proposition 11
(equivalence of MSC forms).

In summary, the transformation defined by the rules above transforms every
canonical form into a MSC form that has the same unwinding. It thus allows
computing MSCpeq, the unique (modulo ”κ) MSC form of e, for every expression e
of the source language.

In practice, we do not need to apply these rewriting rules: the MSC form of an
expression e can be computed efficiently by walking through e while maintaining a
dictionary that maps every atom already defined to the associated binding variable.
This has been implemented in the prototype presented in Chapter 9.

Note that, though the transformation of an expression into its MSC form pre-
serves typing, it does not, intuitively, preserve the reduction semantics, since bind-
ings regroup different occurrences of some subexpression that in the original expres-
sion might be evaluated at different stages of the reduction, or not evaluated at
all. We said “intuitively” because no operational semantics is defined for canonical
forms: we use them just for typing.

To summarize, MSC forms tell us when to apply a [_] rule and on which subex-
pression: a term bind x = a inκ means (roughly) that the expression κta{xu must be
typed by first applying the union-elimination rule to decompose the type of all oc-
currences of a. Putting an expression into its MSC form to type it thus corresponds
to applying the [_] rule on every occurrence of every subexpression of the original
expression. This is a step toward a syntax-directed type system.

By associating each subexpression of the original expression e with a binding
variable, MSC forms allow storing type information about any subexpression of e
in the type environment. Prior to this work, we have explored in Castagna et al.
(2022a) an alternative presentation, where type environments associate types to
expressions (instead of variables). However, this implies the definition of several

5.2. Annotations and algorithmic type system 101

auxiliary operations to manipulate such type environments, and result in a type
system both more complex and less expressive.

5.2 Annotations and algorithmic type system

There are still two issues to solve before obtaining an algorithmic type system: piq
rules [^], [Inst] and [ď] are still not syntax-directed, and piiq rules [_], [Inst], [ÑI],
and [ď] are not analytic. Indeed, the [_] rule requires guessing a type decomposition
(i.e., the monomorphic type u in the premises), the [Inst] rule requires guessing a
substitution, the [ÑI] rule requires guessing the domain u of the function, and the
[ď] rule requires guessing the type t1 to subsume to.

The issue of [Inst] and [ď] not being syntax directed can be solved by embedding
them in some structural rules ([ÑE], [ˆE1], [ˆE2], [0], [P1], and [P2]), as suggested
by the normalization lemmas of Section 4.2. Moreover, the rules in which we embed
[ď] can be made analytic by using the type operators dompq, ˝, π1 and π2 defined
in Section 2.5.

As for rule [^], making it syntax-directed is trickier. Indeed, the usual approach
of merging rules [ÑI] and [^] does not work here, since terms in MSC forms may
hoist a bind definition outside the function where they are used (cf. extrusion
property in Definition 61), causing rule [^] to be needed on a term that is not,
syntactically, a λ-abstraction.

Lastly, there is no easy way to guess the substitutions used by [Inst] rules, or
the domain used in [ÑI] rules, or the decomposition performed by [_] rules.

To tackle these issues, our algorithmic type system will not only take a canon-
ical form as input, but also an annotation that piq indicates when to apply an
intersection, and piiq indicates which type decomposition (for [_] rules), which type
substitutions (for [Inst] rules), and which domain (for [ÑI] rules) to use. Formally,
our algorithmic system uses judgments of the form Γ $A rκ | ks : t for a canonical
form κ, and Γ $A ra | as : t for an atom a where k and a are respectively form
annotations and atom annotations defined as follows:

Definition 63 (Annotation trees). Atom annotation trees and form annotation
trees are finite terms produced by the following grammar:

Atom annotations a ::“ ∅ | λpu,kq | pρ, ρq | @pΣ,Σq | πpΣq
| 0pΣq | P1pΣq | P2pΣq |

Ź

pta, . . . ,auq

Form annotations k ::“ ρ | keep pa, tpu,kq, . . . , pu,kquq | skip k
|

Ź

ptk, . . . ,kuq

where, we recall, ρ ranges over renamings of polymorphic type variables (i.e.,
injective substitutions from VP to VP), and Σ ranges over instantiations (i.e.,
sets of substitutions from VP to T).

102 Chapter 5. Algorithmic Type System

For convenience, we use the metavariable h to range over both atom annotations
and form annotations.

Each node of the annotation tree indicates which typing rule to apply, and in
the case of a non-analytic rule, with which parameters. Note that each syntactic
constructor in the grammar of annotation trees is dedicated to a specific syntactic
expression: an annotation λpu,kq should be paired with a λ-abstraction, an anno-
tation 0pΣq, P1pΣq, or P2pΣq should be paired with a type-case, and an annotation
keep pa, . . . q or skip k should be paired with a bind expression. The exception is
the

Ź

p. . . q annotation, which indicates that a [^] rule must be applied, and that
may be paired with any atom or canonical form.

Annotation trees encode canonical derivations of the declarative type system
(cf. Section 4.2) for the MSC form they are paired with. They are a general-
ization of type annotations inserted in the code. Instead of annotating directly a
MSC form with type-annotations, we use a separate annotation tree because of the
union-elimination and intersection-introduction rules, which type several times the
same expression under different type environments; this would, thus, require dif-
ferent annotations for the same subexpressions: this naturally yields tree-shaped
annotations in which each branching corresponds either to the different deductions
performed by a union-elimination rule or to the different deductions performed by
an intersection-introduction rule.

The full algorithmic type system is given in Figure 5.2. Each rule is explained
below. As usual, α-renaming can be applied implicitly on a canonical form in order
to make a rule apply. Essentially, there is one typing rule for each annotation, the
only exception being the ∅ annotation that is used both in the rule to type constants
and in the two rules for variables.

[Const-Alg]
Γ $A rc | ∅s : bc

[Var-Alg]
Γ $A rx | ∅s : Γpxq

[ÑI-Alg]
Γ, x : u $A rκ | ks : t

Γ $A rλx.κ | λpu,kqs : uÑ t

To type the atom λx.κ, the annotation λpu,kq provides the domain u of the function,
and the annotation k for its body.

[ÑE-Alg]
Γ $A rx1x2 | @pΣ1,Σ2qs : t1 ˝ t2

t1 “ Γpx1qΣ1, t2 “ Γpx2qΣ2

t1 ď 0 Ñ 1, t2 ď dompt1q

To type an application one must apply an instantiation and a subsumption to both
the type of the function and the type of the argument. We recall that instantiations
(i.e., Σ1 and Σ2) are sets of type substitutions; their application to a type t is
defined as tΣ “

def Ź

σPΣ tσ. Since they cannot be directly guessed, they are given by
the annotation. Subsumption instead is embedded in two type operators, defined
in Section 2.5. The first operator, dompq, computes the domain of the arrow and

5.2. Annotations and algorithmic type system 103

[Const-Alg]
Γ $A rc | ∅s : bc

[Var-Alg]
Γ $A rx | ∅s : Γpxq

[ÑI-Alg]
Γ, x : u $A rκ | ks : t

Γ $A rλx.κ | λpu,kqs : uÑ t

[ÑE-Alg]
Γ $A rx1x2 | @pΣ1,Σ2qs : t1 ˝ t2

t1 “ Γpx1qΣ1, t2 “ Γpx2qΣ2

t1 ď 0 Ñ 1, t2 ď dompt1q

[ˆI-Alg]
Γ $A rpx1, x2q | pρ1, ρ2qs : t1 ˆ t2

t1 “ Γpx1qρ1, t2 “ Γpx2qρ2

[ˆE1-Alg]
Γ $A rπ1x | πpΣqs : π1ptq

t “ ΓpxqΣ
t ď p1ˆ 1q

[ˆE2-Alg]
Γ $A rπ2x | πpΣqs : π2ptq

t “ ΓpxqΣ
t ď p1ˆ 1q

[0-Alg]
Γ $A r(xPτ) ? x1 : x2 | 0pΣqs : 0

ΓpxqΣ » 0

[P1-Alg]
Γ $A r(xPτ) ? x1 : x2 | P1pΣqs : Γpx1q

ΓpxqΣ ď τ

[P2-Alg]
Γ $A r(xPτ) ? x1 : x2 | P2pΣqs : Γpx2q

ΓpxqΣ ď ␣τ

[Bind1-Alg]
Γ $A rκ | ks : t

Γ $A rbind x = a inκ | skip ks : t
x R dompΓq

[Bind2-Alg]

Γ $A ra | as : s

p@i P Iq Γ, x : s^ ui $A rκ | kis : ti

Γ $A rbind x = a inκ | keep pa, tpui,kiquiPIqs :
Ž

iPI ti
tuiuiPI P Partp1q

[BindVar-Alg]
Γ $A rx | ρs : Γpxqρ

[^-Alg]
p@i P Iq Γ $A rη | his : ti

Γ $A rη |
Ź

pthiuiPIqs :
Ź

iPI ti
I ‰ ∅

Figure 5.2: Algorithmic Type System

104 Chapter 5. Algorithmic Type System

is used to check that the application is well-typed. The second type operator, ˝,
computes the type of the result of the application.

[ˆE1-Alg]
Γ $A rπ1x | πpΣqs : π1ptq

t “ ΓpxqΣ
t ď p1ˆ 1q

[ˆE2-Alg]
Γ $A rπ2x | πpΣqs : π2ptq

t “ ΓpxqΣ
t ď p1ˆ 1q

The rules for projections [ˆE1-Alg] and [ˆE2-Alg] follow the same idea as the
rule for application [ÑE-Alg], with the use of the two type operators π1 and π2

for computing the type of the result of the projection.

[ˆI-Alg]
Γ $A rpx1, x2q | pρ1, ρ2qs : t1 ˆ t2

t1 “ Γpx1qρ1, t2 “ Γpx2qρ2

To type a pair px1, x2q it is not necessary to instantiate Γpx1q or Γpx2q. However,
to avoid unwanted correlations, it is necessary to rename the polymorphic type
variables of its components. For instance, when typing the pair px, xq with x : αÑ α,
we should type it with pαÑ α, β Ñ βq rather than pαÑ α, αÑ αq, since the former
type has strictly more instances than the latter.

[0-Alg]
Γ $A r(xPτ) ? x1 : x2 | 0pΣqs : 0

ΓpxqΣ » 0

[P1-Alg]
Γ $A r(xPτ) ? x1 : x2 | P1pΣqs : Γpx1q

ΓpxqΣ ď τ

[P2-Alg]
Γ $A r(xPτ) ? x1 : x2 | P2pΣqs : Γpx2q

ΓpxqΣ ď ␣τ

To type type-cases, the annotation indicates which of the three rules must be applied
and how to instantiate the polymorphic type variables occurring in the type of the
tested expression, so that it satisfies the side condition of the applied rule.

[Bind1-Alg]
Γ $A rκ | ks : t

Γ $A rbind x = a inκ | skip ks : t
x R dompΓq

In rule [Bind1-Alg] the annotation indicates to skip the definition of the current
binding. This rule is used when the binding variable is not required for typing the
body κ under the current context Γ. For instance, this is the case when x only
appears in a branch of a type-case that cannot be selected under the hypotheses Γ.
The side condition x R dompΓq prevents a potential unsound name conflict between
binding variables: as occurrences of x in κ denote the x binding variable that is
being skipped, having the type of a former binding variable x in our environment
when typing κ would be unsound.

5.2. Annotations and algorithmic type system 105

Note that this rule does not really have any equivalent in the declarative type
system, but is required because of the use of canonical forms, where each subex-
pression is introduced by a binding before actually being used. Indeed, whereas in
the declarative type system a subexpression is simply ignored when it appears in an
unreachable branch of a type-case (cf. rules [0], [P1], and [P2]), in the algorithmic
type system this subexpression is introduced preemptively by a binding and this
binding is skipped in the contexts where it is not used.

[Bind2-Alg]

Γ $A ra | as : s

p@i P Iq Γ, x : s^ ui $A rκ | kis : ti

Γ $A rbind x = a inκ | keep pa, tpui,kiquiPIqs :
Ž

iPI ti
tuiuiPI P Partp1q

Conversely, the rule [Bind2-Alg] tries to type the bound atom and then decom-
poses its type according to the annotation. This decomposition corresponds to an
application of the [_] rule of the declarative type system.

[BindVar-Alg]
Γ $A rx | ρs : Γpxqρ

The type of the final binding variable of a canonical form is simply read from the
environment, and its polymorphic type variables are renamed according to ρ. Once
again, this renaming is necessary to avoid undesirable correlations, in particular
when regrouping the types ttiuiPI of different branches into a union

Ž

iPI ti in the
[Bind2-Alg] rule.

Finally, two annotations indicate when and how to apply rule [^] to atoms and
canonical forms:

[^-Alg]
p@i P Iq Γ $A ra | ais : ti

Γ $A ra |
Ź

ptaiuiPIqs :
Ź

iPI ti
I ‰ ∅

[^-Alg]
p@i P Iq Γ $A rκ | kis : ti

Γ $A rκ |
Ź

ptkiuiPIqs :
Ź

iPI ti
I ‰ ∅

Let us illustrate the relation between annotation tree and typing derivation with
an example. Consider the term λx.(fxPInt) ? gpfxq :x, where f : α Ñ α and
g : Int Ñ Int. The MSC form corresponding to this expression is written in
Figure 5.3. Figure 5.4 and Figure 5.5 give two examples of possible annotations
for this MSC form. In Figure 5.4, the function is typed with a single λ annotation
of domain β. The interesting part is the annotation of the binding for u: the
corresponding keep annotation represents an application of the union-elimination
rule on the occurrences of the expression fx whose type β is split into β^Int and
βzInt. Each subcase is annotated accordingly. Notice in the second subcase that
the annotation for v is skip, which indicates that this particular variable must not
be used (as gpfxq cannot be typed since in the “else” branch, fx has type ␣Int).
This annotation yields for our MSC form the non-overloaded type β Ñ β _ Int.

This example also shows why the condition of maximal sharing for our forms
is necessary, not only for their uniqueness, but also for the completeness of the

106 Chapter 5. Algorithmic Type System

bind f = f in
bind g = g in
bind z = λx.

bind x = x in
bind u = f x in
bind v = g u in
bind w = (uPInt) ? v : x in
w

in z

Figure 5.3: MSC form of λx.(fxPInt) ? gpfxq :x

keep p∅, tp1, .quq

keep p∅, tp1, .quq

keep p., tp1,∅quq

λpβ, .q

keep p∅, tp1, .quq

keep p@pttα⇝ βuu, t∅uq, tpInt, .q, p␣Int, .quq

keep p@pt∅u, t∅uq, tp1, .quq skip .

keep pP1pt∅uq, tp1,∅quq keep pP2pt∅uq, tp1,∅quq

f

g

z

x

u

v

w

Figure 5.4: Annotation yielding the type β Ñ β _ Int

keep p∅, tp1, .quq

keep p∅, tp1, .quq

keep p., tp1,∅quq

Ź

ptλpInt, .q, λpβzInt, .quq

keep p∅, tp1, .quq keep p∅, tp1, .quq

keep p@pttα⇝ Intuu, t∅uq, tp1, .quq

keep p@pttα⇝ βzIntuu, t∅uq, tp1, .quq

keep p@pt∅u, t∅uq, tp1, .quq skip .

keep pP1pt∅uq, tp1,∅quq keep pP2pt∅uq, tp1,∅quq

f

g

z

x

u

v

w

Figure 5.5: Annotation yielding the type pIntÑ Intq ^ pβzIntÑ βzIntq

5.3. Equivalence with the declarative type system 107

algorithmic system: if the two occurrences of fx in “λx.(fxPInt) ? gpfxq :x” were
not bound by the same variable, viz., if the sharing were not maximal, then it would
not be possible to deduce that gpfxq is well typed using a type decomposition on
fx.

A different annotation, yielding a better type, is the one presented in Figure 5.5.
The intersection annotation used for the definition of z separates the domain of
the λ-abstraction into two cases, each typed independently, yielding for the whole
function the intersection type pIntÑ Intq ^ pβzIntÑ βzIntq.

5.3 Equivalence with the declarative type system

An expression e is typeable if and only if its unique (modulo ”κ) MSC form is
typeable, too:

Theorem 6 (Soundness and Completeness). For every ground expression e of
the source language:

$ e : t ð $A rMSCpeq | ks : t (soundness)

$ e : t ñ Dk $A rMSCpeq | ks : t1 ď t (completeness)

These soundness and completeness properties are stated in terms of MSC forms
and annotation trees. They essentially state that an expression e has type t in the
declarative system if and only if there exists a tree annotation for the (unique) MSC
form of e that is typeable in the algorithmic system with (a subtype of) t.

The rest of this chapter is focused on proving this theorem, establishing the
equivalence between declarative and algorithmic type system. The soundness is
proved in Section 5.3.1 with Theorem 7, and the completeness is proved in Sec-
tion 5.3.2 with Theorem 8.

5.3.1 Soundness

Lemma 31. Let e and e1 be two expressions, Γ an environment, t a type, and
x a binding variable such that x R dompΓq. Let D be a derivation of Γ $: e : t.
Then, we have Γ $: ete1{xu : t.

Proof. Straightforward structural induction on D to substitute occurrences of x
by e1. The condition x R dompΓq ensures that D does not contain any [Var_]
node applied on x.

Theorem 7 (Soundness). Let Γ be a type environment, η a canonical form or
atom, h an annotation tree, and t a type. Let D be a derivation of Γ $A rη | hs : t.
Then, Γ $: rηs : t is derivable.

108 Chapter 5. Algorithmic Type System

Proof. We proceed by structural induction on D in order to build a derivation
Γ $: rηs : t. We consider the root of D:

[Const-Alg] Trivial (we use a [Const] node).

[Var-Alg] Trivial (we use a [Varλ] node).

[ÑI-Alg] We have η ” λx. κ, and thus rηs ” λx. rκs.

By induction on the premise, we get Γ, x : u $: rκs : s. By applying the rule
[ÑI], we get Γ $: rηs : uÑ s (with t » uÑ s).

[ÑE-Alg] We have η ” x1x2. We pose t1 “def Γpx1qΣ1 and t2 “def Γpx2qΣ2.

With a [Var_] node, we can derive Γ $: x1 : Γpx1q and Γ $: x2 : Γpx2q.
Using a [Ÿ] pattern, we can derive from that Γ $: x1 : t1 and Γ $: x2 : t2.
We have t » t1 ˝ t2. Thus, according to the definition of ˝, we know that
t1 ď t2 Ñ t. Thus, with an application of the [ď] rule on Γ $: x1 : t1, we
can derive Γ $: x1 : t2 Ñ t. We can then conclude with an application of
the [ÑE] rule.

[ˆI-Alg] We have η ” px1, x2q.

With a [Var_] node, we can derive Γ $: x1 : Γpx1qρ1 and Γ $: x2 : Γpx2qρ2
(with ρ1 and ρ2 as in the [ˆI-Alg] node). We can then conclude with an
application of the [ˆI] rule.

[ˆE1-Alg] We have η ” π1x. We pose t˝ “ ΓpxqΣ.

With a [Var_] node, we can derive Γ $: x : Γpxq. Using a [Ÿ] pattern, we
can derive from that Γ $: x : t˝. We have t » π1pt˝q. Thus, according to
the definition of π1, we know that t˝ ď t ˆ 1. Thus, with an application
of the [ď] rule, we can derive Γ $: x : tˆ 1. We can then conclude with an
application of the [ˆE1] rule.

[ˆE2-Alg] Similar to the previous case.

[0-Alg] Similar to the previous case.

[P1-Alg] Similar to the previous case.

[P2-Alg] Similar to the previous case.

[BindVar-Alg] Trivial (we use a [Var_] node).

[Bind1-Alg] We have η ” bind x = a inκ and thus rηs ” rκstras{xu.

By induction on the premise, we get Γ $: rκs : t. We can then derive
Γ $: rκstras{xu : t by using Lemma 31.

5.3. Equivalence with the declarative type system 109

[Bind2-Alg] We have η ” bind x = a inκ and thus rηs ” rκstras{xu.

By induction on the first premise, we get Γ $: ras : s. For every i P I,
we apply the induction hypothesis on the corresponding premise. It gives
Γ, x : s^ ui $: rκs : ti. With a [ď] node, we can obtain Γ, x : s^ ui $: rκs : t

(with t »
Ž

iPI ti). We conclude with a [_] node.

[^-Alg] Straightforward application of the induction hypothesis on the premises.

5.3.2 Completeness

For an expression e, our definition of MSCpeq is unique modulo ”κ. In particular,
two MSC forms that differ by the order of their independent bindings are consid-
ered equivalent. We want to prove that the algorithmic type system is complete
with respects to the declarative type system, and this regardless of the order of
independent bindings in the MSC form used. For that, we define a new MSCĎpeq

operator that enforces an arbitrary expression order Ď on bindings and show that
the completeness holds, regardless of Ď.

Definition 64 (Binding context of a form context). Let CF be a form context.
The binding context of CF , noted bindingspCF q, is the binding context defined as
follows:

bindingspr sq “ ε

bindingspbind x =λx.CF inκ q “ bindingspCF q
bindingspbind x = a in CF q “ px, aq; bindingspCF q

Definition 65 (Ordered MSC form). Let Ď be a total expression order (cf. Def-
inition 30). Let κ be a canonical form. We say that κ is a Ď-ordered MSC form
if and only if:

• κ is a MSC-form, and

• For every expression κ1 “ bind x1 = a1 in bind x2 = a2 inκ˝ and form context
CF such that CF rκ1s ” κ, we have ra1sB1 Ď ra2sB2 with B1 “ bindingspCF q
and B2 “ bindingspCF ; px1, a1qq.

Proposition 16 (Unicity of ordered MSC forms). Let Ď be a total expression
order. Let κ1 and κ2 be two Ď-ordered MSC forms. If rκ1s ”α rκ2s, then κ1 ”α

κ2.

110 Chapter 5. Algorithmic Type System

Proof. Direct consequence of Proposition 11.

Definition 66. Let e be an expression of the source language. Let Ď be a total
expression order. The ordered MSC form of e for the order Ď, noted MSCĎpeq,
is the unique Ď-ordered MSC form κ modulo α-renaming such that rκs ”α e.

For proving the completeness of the algorithmic type system, we first need some
intermediate definitions and lemmas to relate expressions from the source language
and MSC forms. In particular, we introduce a notion of atomic source expression
that characterizes which expressions of the source language can be represented by a
single atom in a MSC form.

Definition 67 (Atomic source expression). An expression of the source language
is an atomic source expression if it can be produced by the following grammar:

Atomic source expr. ā ::“ c | x | λx.e | px, xq | xx | πix | (xPτ) ? x : x

and if, for the case λx.e, all subexpressions of e are either a binding variable or
they contain a lambda variable that is not in fvpλx.eq.

The metavariable ā is used to range over atomic source expressions.
Intuitively, the condition on λ-abstractions ensures that, after transforming the

body e of a λ-abstraction λx.e into a MSC form, every binding depends on x or
depends on another lambda variable introduced in e. This is necessary to ensure
that no binding can be extruded outside the definition of λx.e.

Now, we can define for every atomic source expression ā and total expression or-
der Ď its unique representation (modulo α-renaming) as an atom, noted MSCAĎpāq.

Definition 68. For every atomic source expression ā and total expression order
Ď, the atom MSCAĎpāq is defined as follows:

MSCAĎpλx.eq “ λx.MSCĎpeq

MSCAĎpāq “ ā if ā is not a λ-abstraction

Proposition 17. For every atomic source expression ā and total expression order
Ď, we have rMSCAĎpāqs ”α ā.

Proof. Directly follows from the definition of MSCAĎpāq.

5.3. Equivalence with the declarative type system 111

Proposition 18. For every atomic source expression ā and total expression order
Ď, the canonical form bind x =MSCAĎpāq in x is a Ď-ordered MSC form.

Proof. The extrusion property is ensured by the condition on λ-abstractions in
Definition 67. The two other properties are trivially satisfied.

This notion of atomic source expression allows us to decompose the MSC form
of any expression e, as stated by the following lemma.

Lemma 32 (Decomposition of an ordered MSC form). Let Ď be a total expression
order. Let e be an expression. Then, MSCĎpeq is either a binding variable (if e
is a binding variable), or a binding bind x = a inκ where:

• ā is the smallest atomic source expression in e for the Ď order,

• a “ MSCAĎpāq,

• κ “ MSCĎpx,aq
petx{āuq

Proof. We show that the canonical form bind x = a inκ is a Ď-ordered MSC form,
which then allows concluding by uniqueness (Proposition 16).

By Property 18, we get that bind x = a in x is a Ď-ordered MSC form. By
construction, we also get that κ is a Ďpx,aq-ordered MSC form. Thus, we only
need to check that the definition of x in bind x = a inκ is not useless, that it
satisfies maximal sharing with κ, and that it respects the Ď order:

No useless binding As ā is a subterm of e, we have x P fvpetx{āuq and thus
x P fvpκq.

Maximal Sharing etx{āu does not feature any subterm α-equivalent to ā. Thus,
there is no atom a1 in κ such that a1 ”κ a (Proposition 10).

Order Consequence of the fact that ā is chosen minimal for the order Ď.

This decomposition of MSC forms allows us to prove an important lemma that
establishes a relation between the use of a [_] rule in a canonical form derivation
for the expression e and the structure of MSCĎpeq.

Lemma 33 (Relation canonical form derivation Ø MSC form). Let Ď be a total
expression order. Let D be a canonical form derivation of Γ $: e : t for the order
Ď, whose root is a [_] node that does not perform aliasing. Then, there exists
a binding context B, a binding variable x, an atom a and canonical form κ such
that MSCĎpeq ”α termpB, bind x = a inκ q and such that there exists a canonical
form derivation of Γ $: rbind x = a inκ s : t for the order ĎB and whose root is a
[_] node doing the substitution rκstras{xu.

112 Chapter 5. Algorithmic Type System

Proof. We proceed by structural induction on MSCĎpeq.
The case of MSCĎpeq being a binding variable is impossible: the [_] root of

D would perform aliasing. Thus, MSCĎpeq is not a binding variable.
We apply Lemma 32 on MSCĎpeq, yielding that MSCĎpeq ” bind x = a inκ

for some a and κ such that:

• ā is the smallest atomic source expression in e for the Ď order,

• a “ MSCAĎpāq,

• κ “ MSCĎpx,aq
petx{āuq

There are two cases to consider:

• The [_] root of D is performing a substitution tras{yu for some y, in which case
we can conclude (B “ ε).

• Otherwise, by minimality of ā, D cannot contain any [_] node performing a
substitution tras{yu for some y. Thus, as ā is an atomic source expression
and that structural rules only occur in D as the definition premise of a [_]
node, we deduce that D has no subderivation for ā. Thus, we can substitute
in D all the occurrences of the expression ā by a binding variable y, yielding
a derivation D1 of Γ $: ety{āu : t that starts with a [_] node that does not
perform aliasing. We can thus conclude by applying the induction hypothesis
on the derivation D1 and order Ďpy,aq (it is a valid structural induction as
MSCĎpy,aq

pety{āuq ”α κty{xu).

Now, we have all the key elements to prove the completeness of the algorithmic
type system. We start by stating a monotonicity property, which will be used in the
proof of completeness for handling the case of the union-elimination.

Lemma 34 (Monotonicity). Let Γ be a type environment, η a canonical form or
atom, h an annotation tree, and t a type. Let D be a derivation of Γ $A rη | hs : t.
Then, for every type environment Γ1 such that Γ1 Ÿ Γ, there exists an annotation
tree h1 and a type t1 Ÿ t such that Γ1 $A rη | h

1s : t1 is derivable.

Proof. Straightforward structural induction on D.

Lemma 35 (Completeness). Let Γ be a type environment, e an expression, and
t a type. Let Ď be a total expression order. Let D be a canonical form derivation
of Γ $: e : t for the order Ď such that D does not contain any [_] node performing
aliasing. Then, Dk, t1. Γ $A rMSCĎpeq | ks : t

1 with t1 Ÿ t.
Let Γ be a type environment, ā an atomic source expression, and t a type. Let

Ď be a total expression order. Let D be a canonical atomic derivation of Γ $: ā : t

for the order Ď such that D does not contain any [_] node performing aliasing.
Then, Da, t1. Γ $A rMSCAĎpāq | as : t

1 with t1 Ÿ t.

5.3. Equivalence with the declarative type system 113

Proof. We proceed by induction on the depth of D.
We consider the root of D:

[ď] Impossible case (D would not be canonical).

[Inst] Impossible case (D would not be canonical).

[^] In this case, D is an atomic derivation (and the premises of this [^]
node are [ÑI] rules). By induction on the premises, we get @i P

I. Γ $A rMSCAĎpāq | ais : t1i with t1i Ÿ ti. Thus, we can derive
Γ $A rMSCAĎpāq |

Ź

ptaiuiPIqs :
Ź

iPI t
1
i (with

Ź

iPI t
1
iŸ

Ź

iPI ti, cf. Propo-
sition 5).

[Const] Trivial.

[Varλ] Trivial.

[ÑI] We have ā ” λx. e and thus MSCAĎpāq ” λx. MSCĎpeq.

The premise of this [ÑI] node is a canonical form derivation. Thus, by
induction on this premise, we get Γ, x : u $A rMSCĎpeq | ks : t

1 (with
t1 Ÿ t). We can thus derive Γ $A rλx. MSCĎpeq | λpu,kqs : u Ñ t1, and we
have uÑ t1 Ÿ uÑ t, which concludes this case.

[ÑE] We have ā ” x1x2 and thus MSCAĎpāq ” x1x2.

As D is a canonical atomic derivation, we know that the second premise,
Γ $: x2 : t1, is a [Ÿ] pattern with no [ď] node and whose premise is a [Var_]
node. Thus, we know that there exists Σ2 such that Γpx2qΣ2 » t1. Similarly,
the first premise, Γ $: x1 : t1 Ñ t2, is a [Ÿ] pattern whose premise is a [Var_]
node. Thus, we know that there exists Σ1 such that Γpx1qΣ1 ď t1 Ñ t2.

Consequently, and by definition of ˝, we know that pΓpx1qΣ1q ˝ pΓpx2qΣ2q ď

t2. We can thus derive Γ $A rx1x2 | @pΣ1,Σ2qs : t
1 (with t1 » pΓpx1qΣ1q ˝

pΓpx2qΣ2q) such that t1 ď t2, which concludes this case.

[ˆI] We have ā ” px1, x2q and thus MSCAĎpāq ” px1, x2q.

As D is a canonical atomic derivation, both premises can only be [Var_]
nodes. Thus, we can deduce that there exists two renamings of polymorphic
type variables ρ1 and ρ2 such that Γpx1qρ1 » t1 and Γpx2qρ2 » t2. Thus,
we can derive Γ $A rpx1, x2q | pρ1, ρ2qs : t1 ˆ t2.

[ˆE1] We have ā ” π1x and thus MSCAĎpāq ” π1x.

As D is a canonical atomic derivation, we know that the premise, Γ $: x :

t1 ˆ t2, is a [Ÿ] pattern whose premise is a [Var_] node. Thus, we know
that there exists Σ such that ΓpxqΣ ď t1 ˆ t2.

114 Chapter 5. Algorithmic Type System

Consequently, and by definition of π1, we know that π1pΓpxqΣq ď t1. We
can thus derive Γ $A rπ1x | πpΣqs : t1 (with t1 » π1pΓpxqΣq) such that
t1 ď t1, which concludes this case.

[ˆE2] Similar to the previous case.

[0] We have ā ” (xPτ) ? x1 : x2 and thus MSCAĎpāq ” (xPτ) ? x1 : x2.

As D is a canonical atomic derivation, we know that the premise, Γ $: x : 0,
is a [Ÿ] pattern with no [ď] node and whose premise is a [Var_] node.
Thus, we know that there exists Σ such that ΓpxqΣ » 0.

We can thus derive Γ $A r(xPτ) ? x1 : x2 | 0pΣqs : 0.

[P1] We have ā ” (xPτ) ? x1 : x2 and thus MSCAĎpāq ” (xPτ) ? x1 : x2.

As D is a canonical atomic derivation, we know that the first premise,
Γ $: x : τ , is a [Ÿ] pattern whose premise is a [Var_] node. Thus, we know
that there exists Σ such that ΓpxqΣ ď τ . Similarly, the second premise,
Γ $: x1 : t1, can only be a [Var_] rule. Thus, we know that there exists a
renaming of polymorphic variables ρ such that Γpx1qρ » t1.

We can thus derive Γ $A r(xPτ) ? x1 : x2 | P1pΣqs : Γpx1q with Γpx1q Ÿ t1.

[P2] Similar to the previous case.

[Var_] Trivial.

[_] By using Lemma 33, we know that there exists B such that MSCĎpeq ”α

termpB, bind x = a inκ q, and such that there exists a canonical form deriva-
tion D1 of Γ $: rbind x = a inκ s : t for the order ĎB and whose root is a [_]
node doing the substitution rκstras{xu.

By induction on the premises of D1, we get Γ $A ra | as : s
1 (with s1 Ÿ s)

and @i P I. Γ, x : s ^ ui $A rκ | kis : ti (with ti Ÿ t). By monotonicity
(Lemma 34), we can derive @i P I. Γ, x : s1 ^ ui $A rκ | k1is : t

1
i (with

t1i Ÿ ti Ÿ t). We can thus derive Γ $A rbind x = a inκ | ks :
Ž

iPI t
1
i with

k “ keep pa, tpui,k
1
iquiPIq.

From that, we can derive Γ $A rtermpB, bind x = a inκ q | k1s :
Ž

iPI t
1
i

with k
1 obtained by inserting at the root of k a skip annotation for each

definition in B, which concludes the proof.

Theorem 8 (Completeness). Let Ď be a total expression order. Let Γ be a type
environment, e a ground expression, and t a type. Let D be a derivation of
Γ $: e : t. Then, Dk, t1. Γ $A rMSCĎpeq | ks : t

1 with t1 Ÿ t.

5.3. Equivalence with the declarative type system 115

Proof. Direct application of Lemma 35 after using the normalization theorem
(Theorem 1) on D for the order Ď. Note that it is necessary for e to be a
ground expression so that the normalized derivation does not contain any [_]
node performing aliasing.

Chapter 6

Reconstruction Algorithm

Contents
6.1 The tallying algorithm . 120

6.2 Main reconstruction algorithm 121

6.3 Substitution inference system 134

6.4 Backpropagation of splits . 137

6.5 Discussion about the reconstruction algorithm 140

6.5.1 Termination . 140

6.5.2 Incompleteness . 143

The second of the two steps to achieve an effective implementation for the type
system of Chapter 4 is to define a reconstruction algorithm for the algorithmic
system described in Chapter 5. The statements of the soundness and completeness
properties of the algorithmic system clearly suggest what this algorithm is expected
to do: given an expression that defines a polymorphic function, the algorithm must
transform it into its unique MSC form and then try to reconstruct an annotation
tree for it, so that the pair of the MSC form and annotation tree is typeable with
the algorithmic system.

At this point, however, it should be pretty obvious that such a reconstruction
algorithm cannot be complete. Our system merges three well known systems: first-
order parametric polymorphism, intersection types, union-elimination. Now, even
if parametric polymorphism is decidable, in our system we can encode (and type)
polymorphic fixed-point combinators1, yielding a system with polymorphic recur-
sion whose inference has been long known to be undecidable Henglein (1993); Kfoury
et al. (1993). Still, despite being incomplete, our reconstruction algorithm is power-
ful enough to handle both complicated typing use-cases and common programming
patterns of dynamic languages, as we will see in Chapter 9.

Note that performance considerations are not discussed in this chapter: practical
aspects of the implementation are discussed in Chapter 8, and some experimental
results are presented in Chapter 9.

The reconstruction is performed by a system of deduction rules that incremen-
tally refines an annotation tree (initially composed of a single node “infer”) while
exploring the list of bindings of the MSC form of the expression to type. It mixes

1An example of implementation of Curry’s fixpoint combinator is given in Chapter 9 (Sec-
tion 9.1.1.3).

118 Chapter 6. Reconstruction Algorithm

Main
reconstruction

system

Substitution
inference
system

Algorithmic
type system

Partial
annot.

Full
annot. Type

Split
backpropagation

system

Tallying
algorithm
(inference)

Tallying
algorithm

Figure 6.1: Structure of the reconstruction algorithm

two mechanisms: one that infers the domain(s) of λ-terms, and the other that per-
forms occurrence typing (through type decomposition of bindings) when a type-case
is encountered.

The first mechanism is inspired by algorithm W by Damas and Milner (1982):
whenever the application of a destructor (e.g., a function application) is encountered,
a procedure finds a substitution (if any) that makes this application well-typed. In
the context of a Hindley-Milner type system, the algorithm at issue needs to solve
a unification problem (i.e., whether for two given types s and t there exists a sub-
stitution ϕ such as sϕ “ tϕ) which, if solvable, has a principal solution given by a
single substitution (Robinson, 1965). In our system, which is based on subtyping,
the algorithm at issue needs to solve a tallying problem (cf. Section 2.6) which, if
solvable, has a principal solution given by a finite set of substitutions (Castagna
et al., 2015). When multiple substitutions are found, they are all considered and ex-
plored in different branches by adding an intersection branching node in the current
annotation tree.

The second mechanism refines the type decompositions applied to binding vari-
ables in order to perform occurrence typing. When the system encounters a type-
case (xPτ) ? y : z, then the type of the binding variable x is split into s^τ and s^␣τ
(as per the [_] rule of the declarative type system, cf. Chapter 4). This decomposi-
tion is in turn backward-propagated, splitting the type of the binding variables that
appear in the definition of x, and so on.

The reconstruction algorithm is structured in two systems of deduction rules:
the main reconstruction algorithm (Section 6.2) which produces intermediate anno-
tations containing information about the domains of λ-abstractions and the type de-

119

compositions to use in bindings, and the substitution inference system (Section 6.3)
which converts these intermediate annotations into annotations for the algorithmic
type system by computing instantiations Ψ for the destructors. Both the main
reconstruction system and the substitution inference system rely on the tallying
algorithm defined in Chapter 2 in order to infer the type of parameters and the
polymorphic instantiations. The main reconstruction algorithm also relies on an
independent auxiliary system, the split backpropagation system (Section 6.4), which
is used to propagate type decompositions from a binding variable to the binding
variables in its definition. This structure is summarized in Figure 6.1.

To illustrate the role of the main reconstruction system and the substitution
inference system, consider the expression λx. f pg xq, with f : pTruthy Ñ Trueq ^

pFalsyÑ Falseq and g : αˆ 1 Ñ α, whose MSC form is as follows:

bind w =

λx.

bind x = x in

bind y = g x in

bind z = f y in

z
in w

For this MSC form, the main reconstruction system will produce annotations of
the following form (some annotations have been simplified):

keep p., tp1, typquq

Ź

ptλpTruthyˆ 1, .q, λpFalsyˆ 1, .quq

keep ptyp, tp1, .quq keep ptyp, tp1, .quq

keep ptyp, tp1, .quq keep ptyp, tp1, .quq

keep ptyp, tp1, typquq keep ptyp, tp1, typquq

w

x

y

z

Notice how all atoms except λ-abstractions are just annotated with typ, meaning
that this atom is typeable for some annotation, but this annotation is not provided.
In particular, the substitutions required to type the application g x are not provided.
The reason for not including them is that, during the process of reconstruction, the
types of parameters and the type decompositions will be refined many times, each
time invalidating the substitutions that have been computed for applications and
projections. Thus, it would be inconvenient to store these substitutions in the an-
notation during the reconstruction, as it would force us to manually invalidate them
each time a type is refined. Instead, these substitutions are re-computed when-
ever needed by the substitution inference system, which replaces typ annotations
by annotations for the algorithmic type system:

120 Chapter 6. Reconstruction Algorithm

keep p., tp1,∅quq

Ź

ptλpTruthyˆ 1, .q, λpFalsyˆ 1, .quq

keep p∅, tp1, .quq keep p∅, tp1, .quq

keep p@ptα⇝ Truthyu, t∅uq, tp1, .quq keep p@ptα⇝ Falsyu, t∅uq, tp1, .quq

keep p@pt∅u, t∅uq, tp1,∅quq keep p@pt∅u, t∅uq, tp1,∅quq

w

x

y

z

Notice in particular the annotations for the definition of y, corresponding to the
atom g x, that now specify the substitutions necessary to type this polymorphic
application. This annotation tree can now be used to type our MSC form with
the algorithmic type system, which in this case derives the type pTruthy ˆ 1 Ñ
Trueq ^ pFalsyˆ 1 Ñ Falseq.

6.1 The tallying algorithm

In Chapter 2, we defined the tallying problem, consisting in finding, given a set of
constraints C (with each constraint being a pair of types) and a set of type variables
∆, all the substitutions ϕ such that ϕ#∆ and @pt, sq P C. tϕ ď sϕ. These conditions
are also noted ϕ ,∆ C. This problem is decidable and the set of solutions can be
characterized by a finite set Φ of substitutions (where every solution is an instance
of a substitution in Φ).

Tallying is a key ingredient of the reconstruction algorithm presented in this
chapter. It is mainly used in two contexts: piq to find the result type of applications
of polymorphic function types to polymorphic arguments, and piiq to infer the type
of the parameters of λ-abstractions.

The first case requires finding, for a function of type t and an argument of type
s, all the substitutions σ (over polymorphic type variables) such that tσ ď sσ Ñ γ

(with γ a type variable representing the type of the result of the application). For
instance, in order to type f x where f : α Ñ α and x : Int, we try to solve the
tallying problem α Ñ α ď Int Ñ γ, where γ is a fresh type variable capturing
the type of the result of the application. The tallying algorithm will generate the
set of constraints tα ě Int ; α ď γu which, when solved, yields the substitution
tα ⇝ Int _ α ; γ ⇝ Int _ α _ γu (which, in our case, can be simplified into
tα ⇝ Int ; γ ⇝ Intu). This use is merely to perform the type-checking of the
function application f x. For this purpose, we introduce a function tallypCq as follows:

Definition 69 (Tallying). The function tallypCq maps any set of constraints C
to a set of substitutions Σ such that:

@σ P Σ. σ ,VM
C (soundness)

@σ2. pσ2 ,VM
Cq ñ pDσ P Σ. Dσ1. σ2 » σ1 ˝ σq (completeness)

6.2. Main reconstruction algorithm 121

The second case deals with type reconstruction. Indeed, as with algorithm W,
when typing a λ-abstraction, a fresh monomorphic type variable α is introduced as
the type of its argument x. While typing the body, expressions involving x may
constraint its type (e.g. π1x forces the function to accept at most a pair). To
deduce such constraints, tallying is used again, but this time we need to find some
substitutions ψ over monomorphic type variables (as parameters of λ-abstractions
have monomorphic types). For instance, let us consider the expression λx.f x, with
f : Int Ñ Int. Initially, x has type α. Then, while trying to type the body, the
type of x is updated: for the application f x to be typeable, we need to substitute α

by Int^ α. To find this substitution, we introduce an additional tallying function
tally_inferp.q, this time returning substitutions over monomorphic type variables:

Definition 70 (Tallying (inference)). The function tally_inferpt1 9ď t2q maps any
constraint t1 9ď t2 to a set of substitutions Ψ such that:

@ψ P Ψ. Dσ1, σ2. ψ ,VP
tt1σ1 9ď t2σ2u (soundness)

@ψ2. pDσ1, σ2. ψ
2 ,VP

tt1σ1 9ď t2σ2uq ñ pDψ P Ψ. Dψ1. ψ2 » ψ1 ˝ ψq (completeness)

This function tally_inferp.q can be computed from tallyp.q, using renamings and
restrictions:

tally_inferpt1 9ď t2q “
def
tpσ ˝ σ1 ˝ ϕq

ˇ

ˇ

VM
| σ1 P tallyptfreshpt1qϕ 9ď freshpt2qϕuqu

where freshptq denotes the type t where polymorphic type variables have been sub-
stituted by fresh ones; ϕ is a renaming from pvarspt1q Y varspt2qq X VM to fresh
polymorphic type variables; and σ is a substitution mapping each polymorphic type
variable appearing in varspσ1 ˝ ϕq to a fresh monomorphic type variable.

In a nutshell, polymorphic type variables in t1 and t2 are refreshed in order to
decorrelate them, and monomorphic type variables are generalized using ϕ so that
tallyp.q is allowed to find solutions involving them. Each solution σ1 is composed with
ϕ in order to restore the connection with the initial monomorphic type variables,
and the polymorphic type variables in the resulting substitution are transformed into
monomorphic ones by composing σ with it. Finally, the substitution is restricted to
VM (its new domain is thus the same as the domain of ϕ).

For instance, when typing f x from our earlier example (with f : IntÑ Int and
x : α), the tallying instance tally_inferpInt Ñ Int 9ď α Ñ βq is generated (with β

a fresh polymorphic type variable that captures the resulting type). As expected,
solving this instance yields one principal substitution tα ⇝ Int ^ αu. Note that
this substitution does not involve β as β is a polymorphic type variable.

6.2 Main reconstruction algorithm

The main reconstruction algorithm, defined in this section, infers the domains of λ-
abstractions and the decompositions of types into disjoint unions to use for bindings.

122 Chapter 6. Reconstruction Algorithm

It works by successively refining intermediate annotations defined below. These in-
termediate annotations store information about the domains of λ-abstractions and
the decompositions of bindings. However, the instantiations Σ used to type destruc-
tors (i.e., applications, projections, and type-cases) in the algorithmic type system
are not stored in intermediate annotations, because they might get invalidated as
the reconstruction progresses: when new information is found about the domain of a
λ-abstraction or the decomposition of a binding, the algorithm re-types some inter-
mediate definitions of the MSC form, thus invalidating the instantiations Σ of later
definitions. Consequently, these instantiations Σ are recomputed whenever needed,
using the substitution inference system (Section 6.3) that converts intermediate an-
notations into annotations for the algorithmic type system.

Definition 71 (Intermediate annotation trees). Atom intermediate annotations
and form intermediate annotations are finite terms produced by the following
grammar:

Split annotations S ::“ tpu,Kq, . . . , pu,Kqu
Atom intermediate annot. A ::“ infer | untyp | typ

|
Ź

ptA, . . . ,Au, tA, . . . ,Auq
| P1 | P2 | λpu,Kq

Form intermediate annot. K ::“ infer | untyp | typ

|
Ź

ptK, . . . ,Ku, tK, . . . ,Kuq
| try-skip pKq | try-keep pA,K,Kq
| propagate pA,

L
,S,Sq

| skip K | keep pA,S,Sq

where
L

ranges over sets of type environments.

For convenience, we use the metavariable H to range over both atom intermediate
annotations and form intermediate annotations. The meaning of each constructor
will be detailed later on.

The main reconstruction algorithm is presented as a deduction system, for judg-
ments of the form Γ $˚R xη | Hy ñ R, where, we recall, η ranges over atoms and
canonical forms, and R is one of the following:

Result R ::“ OkpHq | Fail | SplitpΓ,H,Hq | SubstpΨ,H,Hq | Var px,H,Hq

Let us see what each result for Γ $˚R xη | Hy means. The first two, Okpq and
Fail, are terminal, meaning that they are definitive answers that cannot be further
refined.

OkpH1q: the reconstruction successfully computed an intermediate annotation H1.
This annotation tree can be turned into an annotation tree h such that Γ $A

rη | hs : t for some type t (that is, such that η is typeable by the algorithmic
system with the annotation h).

6.2. Main reconstruction algorithm 123

Fail: the reconstruction has failed. The algorithm was not able to find an annota-
tion that makes η typeable with the algorithmic type system.

The other three results are intermediary, and specify three arguments for their
continuation: an object that generates new hypotheses to make η typeable when
analyzed again, an annotation H1 to use in that case, and a default annotation H2

to be used when the new hypotheses do not hold.

SubstpΨ,H1,H2q: the reconstruction found a set of substitutions Ψ that if applied
to Γ may make η typeable. In practice, for each substitution ψ P Ψ, the
reconstruction will be called again on the environment Γψ and annotation
H1ψ. However, this does not necessarily mean that the reconstruction will
fail on the current environment Γ: η might still be typeable but with a less
precise type (e.g., it could yield a function type with a smaller domain). Thus,
this “default” case which does not instantiate Γ is also explored, using the
annotation H2 instead of H1.

SplitpΓ1,H1,H2q: the reconstruction found some splits for the variables in dompΓ1q
that if applied to Γ may make η typeable. In practice, the system will generate
several new environments: one is obtained by (pointwise) intersecting Γ with
Γ1 and will be used to re-type η with the annotation H1; the others are obtained
by intersecting Γ with tpx : ␣Γ1pxqqu for any x P dompΓ1q, and they will be
used to re-type η with the annotation H2.

Var px,H1,H2q: the reconstruction found that in order to type η, the definition of
the bind-abstracted variable x should be typed. Any branch that successfully
types it continues with the annotation H1, otherwise it continues with the
annotation H2.

Initially, any form or atom η is annotated with infer, and this annotation is
then refined until it yields a terminal result (i.e., either Okpq or Fail).

There are two different forms of judgments: Γ $˚R xη | Hy ñ R and Γ $R
xη | Hy ñ R. We first define rules for the judgment $R for every canonical form
and atom. The results of these judgments are not necessarily terminal and, therefore,
it may be necessary to call the reconstruction again in order to refine them. This is
the purpose of $˚R judgments which call repetitively $R judgments when relevant,
so that in the end we get a terminal result. Let us first focus on $R judgments.

The rules below are presented by decreasing priority (i.e., the first rule that
applies is used).

[Ok]
Γ $R xη | typy ñ Okptypq

[Fail]
Γ $R xη | untypy ñ Fail

If a canonical form or atom η is annotated with typ, then reconstruction is finished
for η, and it is typeable in the current context Γ. The annotation typ is never used
on λ-abstractions and bindings because the system needs to store more information

124 Chapter 6. Reconstruction Algorithm

for them. Likewise, if a form or atom η is annotated with untyp, then reconstruction
is finished for η by failing in the current context.

[Const]
Γ $R xc | infery ñ Okptypq

[VarOk]
x P dompΓq

Γ $R xx | infery ñ Okptypq
[VarFail]

Γ $R xx | infery ñ Fail

A constant c is typeable regardless of the environment, and thus the algorithm
returns Okptypq. If a λ-abstracted variable x is in the environment, then it is typeable
and the algorithm returns Okptypq. Otherwise, x is undefined and Fail is returned
(we recall that the rules are presented in decreasing order of priority).

[PairVari]
xi R dompΓq

Γ $R xpx1, x2q | infery ñ Var pxi, infer, untypq

[PairOk]
tx1, x2u Ď dompΓq

Γ $R xpx1, x2q | infery ñ Okptypq

To type the pair px1, x2q, we must ensure that tx1, x2u Ď dompΓq. If it is not the
case, then the two rules [PairVari] (for i “ 1, 2) try to remedy it by returning
Var pxi, infer, untypq, which is the result that asks the system to try to type the
atom bound to xi for xi R dompΓq. If the attempt is successful, then the algorithm
will continue with the annotation infer and xi P dompΓq, otherwise it will continue
with the annotation untyp making the reconstruction fail on this pair. If both x1
and x2 are in the environment, then the pair is typeable and the rule [PairOk]
returns Okptypq.

[ProjVar]
x R dompΓq

Γ $R xπix | infery ñ Var px, infer, untypq

[ProjInfer]
Ψ “ tally_inferpΓpxq 9ď αˆ βq

Γ $R xπix | infery ñ SubstpΨ, typ, untypq
α, β P VP fresh

When typing a projection πix, the rule [ProjVar] handles the case where x R
dompΓq, similarly to the rules [PairVari] for pairs. If x P dompΓq, then the recon-
struction continues with the rule [ProjInfer], which tries to find all instances of
the current context in which the projection πix is typeable, by subsuming Γpxq to
α ˆ β. For that, it calls the tallying algorithm which returns a set of substitutions
Ψ. Then, SubstpΨ, typ, untypq is returned, meaning that this projection should be
typeable under every instance Γψ of the current context Γ (with ψ P Ψ). The de-
fault case (i.e., when the current context is unchanged, for example, when Ψ “ ∅)
cannot be typed, so it is annotated with untyp (see rule [Iterate2] later on).

6.2. Main reconstruction algorithm 125

[AppVari]
xi R dompΓq

Γ $R xx1x2 | infery ñ Var pxi, infer, untypq

[AppInfer]
Ψ “ tally_inferpΓpx1q 9ď Γpx2q Ñ αq

Γ $R xx1x2 | infery ñ SubstpΨ, typ, untypq
α P VP fresh

Again, the two rules [AppVari] (for i “ 1, 2) are similar to the two rules [PairVari].
Then, if tx1, x2u Ď dompΓq, the rule [AppInfer] tries to find all instances of the
current context in which the application x1x2 is typeable, by subsuming Γpx1q (the
type of the function) to Γpx2q Ñ α (a function type whose domain is the type of the
argument). Again, this is done using the tallying algorithm, which computes a set
of substitutions Ψ, and the annotation SubstpΨ, typ, untypq is returned.

[CaseVar]
x R dompΓq

Γ $R x(xPτ) ? x1 : x2 | infery ñ Var px, infer, untypq

[CaseSplit]
Γpxq ę τ Γpxq ę ␣τ

Γ $R x(xPτ) ? x1 : x2 | infery ñ Splitptpx : τqu, infer, inferq

The key rule for type-cases is [CaseSplit], corresponding to the case where x is
in Γ, but with a type that does not allow the selection of a specific branch. Thus,
we need to partition the type of x in two, one part being a subtype of τ and the
other a subtype of ␣τ . This is achieved by returning Splitptpx : τqu, infer, inferq:
this result is backtracked up to the binding of x, where it will be used to split the
associated type, accordingly.

Before showing the other type-case rules, we recall that in the algorithmic type
system, there are three typing rules for type-cases:

1. When x ď 0, both branches are skipped (rule [0-Alg]),

2. When x ď τ , the second branch is skipped (rule [P1-Alg]),

3. When x ď ␣τ , the first branch is skipped (rule [P2-Alg]).

The split performed by the rule [CaseSplit] guarantees that we are now either in
the case 2 or in the case 3. Still, before typing the remaining branch of the type-case,
we must check whether the rule [0-Alg] could be used instead (case 1), as it would
allow skipping this branch too.

126 Chapter 6. Reconstruction Algorithm

[CaseEmpty]
Γpxq » 0

Γ $R x(xPτ) ? x1 : x2 | infery ñ Okptypq

[CaseThen]
Γpxq ď τ Ψ “ tally_inferpΓpxq 9ď 0q

Γ $R x(xPτ) ? x1 : x2 | infery ñ SubstpΨ, typ, P1q

[CaseElse]
Γpxq ď ␣τ Ψ “ tally_inferpΓpxq 9ď 0q

Γ $R x(xPτ) ? x1 : x2 | infery ñ SubstpΨ, typ, P2q

When x has type 0, then [CaseEmpty] applies and returns Okptypq (the type-case is
typeable using the algorithmic rule [0-Alg]). Otherwise, when the type of x allows
the selection of a branch, then either the rule [CaseThen] or the rule [CaseElse]
applies. If we are in the case of [CaseThen], that is Γpxq ď τ , then we have to
determine whether we will apply the algorithmic rule [0-Alg] or the algorithmic rule
[P1-Alg]. To determine it, the [CaseThen] rule calls tally_inferpΓpxq 9ď 0q which
returns the set of contexts Γψ (for ψ P Ψ) under which the algorithmic rule [0-Alg]
is to be applied, that is, the contexts under which the tested expression x has an
empty type. The default case, corresponding to the case in which the type of Γpxq
is not guaranteed to be empty and, thus, in which the algorithmic rule [P1-Alg]
must be applied, is annotated with P1. This annotation is handled by the rules
[CaseVar1] and [CaseOk1] below, which force the system to type x1, the binding
variable associated to the first branch. The case of [CaseElse] and [CaseVar2] is
analogous.

[CaseVari]
xi R dompΓq

Γ $R x(xPτ) ? x1 : x2 | Piy ñ Var pxi, typ, untypq

[CaseOki]
Γ $R x(xPτ) ? x1 : x2 | Piy ñ Okptypq

The annotation P1 (resp. P2) is an intermediate annotation, it is only used to indicate
that the rule [CaseThen] (resp. [CaseElse]) has already been applied, but that
the first branch (resp. second branch) of the type-case may not have been analyzed
yet. In the end, the type-case is either annotated with typ or untyp.

One could wonder why the [CaseThen] and [CaseElse] rules are necessary.
Indeed, when Γpxq ď τ , the [CaseVar1] or [CaseOk1] rule could directly be applied
(and similarly when Γpxq ď ␣τ). However, the [CaseThen] and [CaseElse] rules
allow finding contexts that may yield more precise types. For instance, consider the
expression λx. (xPInt) ? true : false. We would like to type it with the intersection
type pInt Ñ Trueq ^ p␣Int Ñ Falseq rather than 1 Ñ Bool. Indeed, when x has
type Int, then the second branch of the type-case is not taken, and thus it does not
need to be typed. Similarly, when x has type ␣Int, then the first branch of the

6.2. Main reconstruction algorithm 127

type-case does not need to be considered. The goal of the rules [CaseThen] and
[CaseElse] is to find these two particular contexts: the rule [CaseThen] searches
the contexts under which the first branch of the type-case can be skipped, and
the rule [CaseElse] searches the contexts under which the second branch of the
type-case can be skipped.

[LambdaInfer]
Γ $R xλx.κ | λpα, inferqy ñ R

Γ $R xλx.κ | infery ñ R
α P VM fresh

[Lambda]
Γ, x : u $˚R xκ | Ky ñ R

Γ $R xλx.κ | λpu,Kqy ñ mappX ÞÑ λpu, Xq, Rq

The rules for λ-abstractions mimic the algorithm W. Rule [LambdaInfer] trans-
forms the initial infer annotation into a λpα, inferq annotation. As in W, λ-
abstracted variables are initially typed with a fresh monomorphic type variable,
which will then be substituted as needed while reconstructing the type of the body.
Note that, although the type variable is monomorphic, it can still be substituted
during the reconstruction of the body, as solutions found by tally_inferp.q involve
monomorphic type variables (cf. Section 6.1). Rule [Lambda] adds the λ-abstracted
variable to the environment with the type specified in the annotation, recursively
calls reconstruction on the body, and reestablishes the variable type annotation on
the result. The notation mappX ÞÑfpXq, Rq denotes the result R where f has been
applied to every annotation X:

mappX ÞÑ fpXq, OkpHqq “def OkpfpHqq

mappX ÞÑ fpXq, Failq “def Fail

mappX ÞÑ fpXq, SplitpΓ,H1,H2qq “
def SplitpΓ, fpH1q, fpH2qq

mappX ÞÑ fpXq, SubstpΨ,H1,H2qq “
def SubstpΨ, fpH1q, fpH2qq

mappX ÞÑ fpXq, Var px,H1,H2qq “
def Var px, fpH1q, fpH2qq

Now that we have explained the rules for atoms, let us focus on those for canon-
ical forms.

[BindVar]
x R dompΓq

Γ $R xx | infery ñ Var px, infer, untypq

[BindVarOk]
Γ $R xx | infery ñ Okptypq

There is nothing new with the rules for binding variables. Note that they are
different from the rules for lambda variables: while lambda variables are introduced
by λ-abstractions, and thus they cannot be skipped (the variable is systematically
added to the environment when entering the body of the λ-abstraction), binding

128 Chapter 6. Reconstruction Algorithm

variables are introduced by bindings, and thus they may be skipped (cf. rule [Bind1-
Alg] of the algorithmic type system, Figure 5.2). That is why the rule [BindVar]
returns Var px, infer, untypq when the associated binding variable is not in the
environment, while the rule [VarFail] given at page 124 returns Fail when the
associated lambda variable is not in the environment (which can only happen if the
source expression contains variables that are not bound by a λ-abstraction).

The rules for bindings are the most numerous. As bindings make the connection
between the different atoms, there are many cases to consider, each case being
handled by a rule.

[BindInfer]
Γ $R xbind x = a inκ | try-skip pinferqy ñ R

Γ $R xbind x = a inκ | infery ñ R

The [BindInfer] rule transforms an initial infer annotation into a
try-skip pinferq annotation which skips the binding and annotates the body κ

with infer. Indeed, we do not try to type the definition of a binding until it is
actually used, because its variable might appear only in unreachable positions (e.g.,
in an unreachable branch of a type-case). In other words, we implement a lazy
typing discipline for binding variables. If the variable is used at some point, then
an attempt to type it will be initiated by the [BindTrySkip1] rule below:

[BindTrySkip1]

Γ $˚R xκ | Ky ñ Var px,K1,K2q

Γ $R xbind x = a inκ | try-keep pinfer,K1,K2qy ñ R

Γ $R xbind x = a inκ | try-skip pKqy ñ R

This rule tries to type the body of the binding, starting with the annotation K (ini-
tially infer). If the result is a Var px,K1,K2q, then it means that the current binding
is used in the body κ and, thus, the system should try to type it. Consequently,
the annotation for the current binding is changed into a try-keep pinfer,K1,K2q

so that, at the next iteration, its definition will be reconstructed.
If typing the body yields OkpK1q, it means that, in the current context, the body

can be typed without using the binding variable x. Thus, the current annotation
can be changed from try-skip pKq to skip K1:

[BindTrySkip2]
Γ $˚R xκ | Ky ñ OkpK1q

Γ $R xbind x = a inκ | try-skip pKqy ñ Okpskip K1q

Finally, if typing the body of the binding yields a result different from
Var px,K1,K2q and OkpK1q, then this result is just propagated as in [Lambda]:

[BindTrySkip3]
Γ $˚R xκ | Ky ñ R

Γ $R xbind x = a inκ | try-skip pKqy ñ R1

where R1 “ mappX ÞÑ try-skip pXq, Rq.

6.2. Main reconstruction algorithm 129

Now, we need some rules to handle the annotation try-keep pA,K1,K2q:

[BindTryKeep1]

Γ $˚R xa | Ay ñ OkpA1q
Γ $R xbind x = a inκ | keep pA1, tp1,K1qu,∅qy ñ R

Γ $R xbind x = a inκ | try-keep pA,K1,K2qy ñ R

[BindTryKeep2]

Γ $˚R xa | Ay ñ Fail

Γ $R xbind x = a inκ | skip K2y ñ R

Γ $R xbind x = a inκ | try-keep pA,K1,K2qy ñ R

[BindTryKeep3]
Γ $˚R xa | Ay ñ R

Γ $R xbind x = a inκ | try-keep pA,K1,K2qy ñ R1

where R1 “ mappX ÞÑ try-keep pX,K1,K2q, Rq.
As expected, if the current annotation for the binding is a try-keep pA,K1,K2q,

then the system tries to reconstruct the annotation for the definition. If it succeeds,
then it becomes possible to type the definition and to continue the reconstruction
of the body using K1. This is what [BindTryKeep1] does by changing the current
annotation to keep pA1, tp1,K1qu,∅q (more details are given later). If the recon-
struction of the definition fails (rule [BindTryKeep2]), then we have no choice but
to skip this definition and use the default annotation K2 to type the body. Finally,
the rule [BindSkip3] handles all the other possibles results for the reconstruction
of the definition, and simply forwards them after reestablishing the annotation for
the current binding.

The rules for handling skip K annotations are as follows:

[BindSkip1]

Γ $˚R xκ | Ky ñ Var px,K1,K2q

Γ $R xbind x = a inκ | skip K2y ñ R

Γ $R xbind x = a inκ | skip Ky ñ R

[BindSkip2]
Γ $˚R xκ | Ky ñ R

Γ $R xbind x = a inκ | skip Ky ñ mappX ÞÑ skip X, Rq

The skip K annotation means that the definition of the binding must be skipped.
Thus, if reconstructing annotations for body of the binding yields Var px,K1,K2q

(rule [BindSkip1]), we do not attempt reconstructing annotations for the definition
as in the [BindTrySkip1] rule, but instead the annotation for the body is changed
to K2, and we try to reconstruct it again. The rule [BindSkip2] forwards any other
result, as usual.

Finally, we focus on the rules handling the keep pA,S,S 1q annotations. For a
binding bind x = a inκ and annotation keep pA,S,S 1q:
A is the annotation for typing the definition of x,

S describes the type decomposition to use for x and, for each part of the decom-
position, the annotation to use for the body. It only contains parts of the
decomposition whose annotations have not been fully reconstructed yet.

130 Chapter 6. Reconstruction Algorithm

S 1 also describe the type decomposition to use for x, but it contains only the parts
whose annotations have already been fully reconstructed.

For instance, the annotation keep pA1, tp1,K1qu,∅q used in rule [BindTryKeep1]
means that the type of the definition does not need to be partitioned: there is only
one part, covering 1, associated to an annotation K1 (for typing the body) which
has not been fully reconstructed yet.

In the more general case, types and annotations in S are processed one a time.
Those yielding a successful typing are recorded in S 1. This is handled by the set of
rules below.

[BindOk]
Γ $R xbind x = a inκ | keep pA,∅,Sqy ñ Okpkeep pA,∅,Sqq

If all the parts of the type decomposition have already been reconstructed, then the
reconstruction is successful. Otherwise, the following rules are applied:

[BindKeep1]

Γ $S xa | Ay ñ a

Γ $A ra | as : s Γ, x : s^ u $˚R xκ | Ky ñ OkpK1q
Γ $R xbind x = a inκ | keep pA,S, tpu,K1qu Y S 1qy ñ R

Γ $R xbind x = a inκ | keep pA, tpu,Kqu Y S,S 1qy ñ R

[BindKeep2]

Γ $S xa | Ay ñ a Γ $A ra | as : s

Γ, x : s^ u $˚R xκ | Ky ñ SplitpΓ1,K1,K2q x P dompΓ1q
Γ $B pa : ␣pu^ Γ1pxqqq ñ

L
1 Γ $B pa : ␣puzΓ1pxqqq ñ

L
2

Γ $R xbind x = a inκ | keep pA, tpu,Kqu Y S,S 1qy ñ R1

where R1 “ SplitpΓ1zx,K11,K12q with K11 “ propagate pA,
L
1 Y

L
2, tpu ^

Γ1pxq,K1q, puzΓ1pxq,K2qu Y S,S 1q and K12 “ keep pA, tpu,K2qu Y S,S 1q.

[BindKeep3]

Γ $S xa | Ay ñ a

Γ $A ra | as : s Γ, x : s^ u $˚R xκ | Ky ñ R

Γ $R xbind x = a inκ | keep pA, tpu,Kqu Y S,S 1qy ñ R1

where R1 “ mappX ÞÑ keep pA, tpu, Xqu Y S,S 1q, Rq.
In each rule, the definition of the binding is typed using the annotation A. For

that, it is first converted into an annotation a of the algorithmic type system, using
the deduction rules for the judgment Γ $S xa | Ay ñ a, defined in Section 6.3.
Then, the type s obtained for the definition is intersected with one of the parts u of
the type decomposition, according to the second argument of the keep annotation
(i.e., tpu,Kqu Y S in each rule), and the corresponding annotation for the body is
reconstructed recursively. Note that this type s^u precisely corresponds to the one
in the [_] rule of the declarative type system (Figure 4.1) and [Bind2] rule of the
algorithmic type system (Figure 5.2). Also note that, since split annotations are
sets, the order in which the parts are explored is arbitrary.

6.2. Main reconstruction algorithm 131

The rule [BindKeep1], for an annotation keep pA,S,S 1q, is responsible for mov-
ing a branch from S to S 1 when its reconstruction is over (i.e., when the result for
the branch is Okpq). If instead the reconstruction of the body requires to further
split the type of x, then the rule [BindKeep2] splits the current branch into two
branches. However, before exploring these two branches, some information about
the split needs to be propagated in order to ensure that when a split is explored, it
is under a context as precise as possible. This is where the backward propagation
of types mentioned in our introduction occurs.

Let us explain this by an example. Assume we have, in the type environment,
a binding variable f of type α Ñ α and a lambda variable x of type Bool (i.e.,
Γ “ tf : α Ñ α ; x : Boolu). We want to type the following canonical form, and
deduce for it the type True (since x and y are always bound to the same value):

bind x = x in bind y = f x in bind z = (yPTrue) ? x : true in z

At some point, the type partition associated to y will change from t1u to
tTrue,␣Trueu because of the type-case (rule [CaseSplit]). However, if the case
corresponding to py : Trueq is immediately explored, it will yield for the body the
type Bool, because x still has the type Bool in the environment. In order to obtain
the more precise type True, we must deduce, before exploring the case py : Trueq,
that when f x (the definition of y) has type True, then x also has type True (since
f is of type α Ñ α). Knowing that, the type of x should be split accordingly into
tTrue,␣Trueu. This way, the following environments will be considered by our
reconstruction algorithm:

Γ1 “ tx : True; y : Trueu ; Γ2 “ tx : True; y : 0u ;

Γ3 “ tx : ␣True; y : 0u ; Γ4 “ tx : ␣True; y : ␣Trueu

Under Γ1 and Γ4, z will be typed True (using [P1-Alg] and [P2-Alg]), and under
Γ2 and Γ3 it will be typed 0 (using [0-Alg]). Thus, we obtain the type True for
this expression. Note that it may seem redundant to explore the environments Γ2

and Γ4 (the environments Γ2 and Γ3 already capture every possible case). Still,
these redundant cases are explored by the reconstruction algorithm: for instance,
Γ2 corresponds to the case where the True part is selected for x, and the False part
is selected for y (to be intersected with the type True of the atom associated to
y). We will see in Chapter 8 how to change the reconstruction algorithm to avoid
exploring such redundant cases.

This mechanism of backward propagation of splits is initiated in the
[BindKeep2] rule with the two premises Γ $B pa : ␣pu ^ Γ1pxqqq ñ

L
1 and

Γ $B pa : ␣puzΓ1pxqqq ñ
L
2. This auxiliary judgment Γ $B pa : uq ñ

L
, that

will be formally defined in Section 6.4, can be read as follows: “intersecting the
current environment Γ with one of the Γ1 P

L
makes the type u derivable for the

atom a”. The refinements
L
1 and

L
2 we obtain are stored in the annotation of the

binding, using an annotation propagate pA,
L
1 Y

L
2, . . . , . . . q. This annotation is

132 Chapter 6. Reconstruction Algorithm

then handled by the two following rules:

[BindProp1]
Γ1 P

L
compatiblepΓ,Γ1q

Γ $R xbind x = a inκ | propagate pA,
L
,S,S 1qy ñ R1

where R1 “ SplitpΓ2,K1,K2q with Γ2 “ tpx : uq P Γ1 | Γpxq ę uu, K1 “

keep pA,S,S 1q, and K2 “ propagate pA,
L
ztΓ1u,S,S 1q.

[BindProp2]
Γ $R xbind x = a inκ | keep pA,S,S 1qy ñ R

Γ $R xbind x = a inκ | propagate pA,
L
,S,S 1qy ñ R

The role of those two rules is to propagate the refinements in
L
, so that when

the reconstruction of this binding continues, it is either under an environment that
refines one of the Γ1 P

L
or under an environment that is disjoint from all of them.

The relation compatiblepΓ,Γ1q ensures that Γ1 is a valid refinement for Γ and that it
is not already disjoint from it. Formally, it is defined as follows:

compatiblepΓ,Γ1q ô pdompΓ1q Ď dompΓqq and

p@x P dompΓ1q. pΓpxq ^ Γ1pxq fi 0q or pΓpxq » 0qq

If at least one of the Γ1 P
L

is compatible with the current environment Γ, then
[BindProp1] initiates a split of the current environment Γ according to Γ1 using a
SplitpΓ2,K1,K2q result, where Γ2 is just a filtered version of Γ1 where only strict
refinements are kept. The annotation K1 corresponds to the annotation to use in the
case where the environment refines Γ1: in this case, we can continue the reconstruc-
tion with a keep pA,S,S 1q annotation. In the other cases, which use the annotation
K2, we continue the backpropagation with the remaining refinements. When there
is no compatible refinement left, Rule [BindProp2] continues the reconstruction
with an annotation keep pA,S,S 1q.

Lastly, we need rules for intersections. Until now, we have not used intersec-
tion annotations, but they will be used by the $˚R judgments defined at the end
of this section. Indeed, intersection annotations allow us to explore multiple typ-
ing derivations for a given atom or canonical form, which is useful when we have
several cases to explore (in particular, when reconstructing annotations for an over-
loaded function). The rules for intersection annotations are the following (we recall
that η denotes either an atom or a canonical form, and H denotes either an atom
intermediate annotation or a form intermediate annotation):

[InterEmpty]
Γ $R xη |

Ź

p∅,∅qy ñ Fail

[InterOk]
Γ $R xη |

Ź

p∅, Sqy ñ Okp
Ź

p∅, Sqq

[Inter1]
Γ $˚R xη | Hy ñ OkpH1q Γ $R xη |

Ź

pS, tH1u Y S1qy ñ R

Γ $R xη |
Ź

ptHu Y S, S1qy ñ R

6.2. Main reconstruction algorithm 133

[Inter2]
Γ $˚R xη | Hy ñ Fail Γ $R xη |

Ź

pS, S1qy ñ R

Γ $R xη |
Ź

ptHu Y S, S1qy ñ R

[Inter3]
Γ $˚R xη | Hy ñ R

Γ $R xη |
Ź

ptHu Y S, S1qy ñ mappX ÞÑ p
Ź

ptXu Y S, S1qq, Rq

In an intersection annotation
Ź

pS, S1q, the annotations in S1 are fully processed
(i.e., the associated reconstruction returned Okpq), while the annotations in S are
not: they still have to be refined one after the other (rule [Inter3]). If one of them
becomes fully processed, it is moved in S1 (rule [Inter1]). Conversely, if one of
them fails, it is removed (rule [Inter2]). The process stops when S is empty: then,
the reconstruction fails if S1 is empty (rule [InterEmpty]), and succeed otherwise
(rule [InterOk]).

Now, we formalize the rules for the judgments $˚R. As said earlier, the purpose
of $˚R is to repeatedly call $R judgments so that, in the end, we obtain a terminal
result.

[Iterate1]
Γ $R xη | Hy ñ SplitpΓ1,H1,H2q Γ $˚R xη | H1y ñ R

Γ $˚R xη | Hy ñ R
Γ1 “ ∅

[Iterate2]

Γ $R xη | Hy ñ SubstptψiuiPI ,H1,H2q

Γ $˚R xη |
Ź

ptH1ψiuiPI Y tH2u,∅qy ñ R

Γ $˚R xη | Hy ñ R
@i P I. ψi#Γ

where Hψ is the intermediate annotation H in which the substitution ψ has been
applied recursively to every type in it.

The iteration continues as long as it yields non-terminal results that are imme-
diately usable, that is, either they return a trivial split (i.e., Γ1 “ ∅) as in rule
[Iterate1], or they return substitutions that do not affect the current environment
(i.e., ψi#Γ) as in rule [Iterate2]. For the latter rule, the iteration may need to
introduce an intersection annotation (useless when I is empty) in order to explore
all the cases H1ψi and the default case H2 of a SubstptψiuiPI ,H1,H2q result.

If the result is already terminal or if it is not immediately usable, then it is
directly returned:

[Stop]
Γ $R xη | Hy ñ R

Γ $˚R xη | Hy ñ R

In particular, if R “ SplitpΓ1,H1,H2q where Γ1 “ ∅ (i.e., [Iterate1] does
not apply), then [Stop] backtracks until Γ1 becomes empty; likewise if R “

SubstptψiuiPI ,H1,H2q and Γψi fi Γ for some i (i.e., [Iterate2] does not apply),
then [Stop] backtracks until it exits the scope of the binders of the variables that
make the side condition of [Iterate2] fail.

An important remark about the [Iterate2] rule is that, in addition to all the
instantiations H1ψi (for i P I), the default case H2 is always considered. This default
case can be useful in order not to lose generality. The [CaseThen] and [CaseElse]

134 Chapter 6. Reconstruction Algorithm

rules discussed earlier are a good illustration. These two rules look for some possible
instantiations Ψ of the type environment that would make the first or second branch
of a type-case unreachable. It is interesting to explore such environments separately
as they allow to find a smaller type for the type-case. However, it is not necessary
for a type-case to have an unreachable branch in order to be typeable: for instance,
(rand_bool () PTrue) ? 42 : 41 is typeable (with rand_bool : Unit Ñ Bool) even
though no instantiation of Γ “ trand_bool : Unit Ñ Boolu can make a branch
unreachable.

Sometimes, however, the default case H2 considered by the [Iterate2] rule
might be useless, for instance if the annotation H2 is untyp, or if one of the ψi is the
identity substitution. In the first case, the branch H2 of the intersection annotation
will be explored at some point, yielding Fail, which will make the [Inter2] rule to
apply and to remove this useless branch. In the second case, the branch H2 will also
be explored, but its reconstruction might succeed, and thus the branch might be
kept. While this is redundant, as the type obtained for this branch will be larger than
the type obtained for the H1 branch, this is not an issue in the theory. In practice,
however, redundant branches should be eliminated for performance reasons. This
will be discussed in Chapter 8.

6.3 Substitution inference system

The substitution inference system defined in this section converts an intermediate
annotation of the main reconstruction system into an annotation for the algorithmic
type system. For that, it needs to retrieve the polymorphic instantiations Σ needed
to type the atoms.

Formally, the algorithm takes as input an environment Γ, an atom or canonical
form η, and an intermediate annotation H, and produces an annotation h for the
algorithmic type system. It is presented as a deduction system for judgments of the
form Γ $S xη | Hy ñ h. The intermediate annotation H given as input is assumed
to be terminal: it should result from a judgment Γ $˚R xη | H1y ñ OkpHq.

[Const]
Γ $S xc | typy ñ ∅

[Var]
Γ $S xx | typy ñ ∅

x P dompΓq

The rules for constants and variables just transform an intermediate annotation
typ into an annotation ∅ for the algorithmic type system.

[Pair]
ρ1 “ refreshpΓpx1qq ρ2 “ refreshpΓpx2qq

Γ $S xpx1, x2q | typy ñ pρ1, ρ2q

where refreshptq denotes a renaming from varsptq X VP to fresh polymorphic type
variables.

The rule for pairs must produce an annotation pρ1, ρ2q, with ρ1 a renaming
for the polymorphic type variables of the first component x1 of the pair, and ρ2 a

6.3. Substitution inference system 135

renaming for polymorphic type variables of the second component x2 of the pair. The
polymorphic type variables of each component are renamed to fresh type variables, in
order to avoid unnecessary correlations between the two components in the resulting
product type.

The most important rules for this system are the one for projections and appli-
cations:

[Proj]
Σ “ tallyptΓpxq 9ď αˆ βuq

Γ $S xπix | typy ñ πpΣq
Σ ‰ ∅
α, β P VP fresh

[App]

t1 “ Γpx1q t2 “ Γpx2q ρ1 “ refreshpt1q
ρ2 “ refreshpt2q Σ “ tallyptt1ρ1 9ď t2ρ2 Ñ αuq

Γ $S xx1x2 | typy ñ @ptσ ˝ ρ1 | σ P Σu, tσ ˝ ρ2 | σ P Σuq
Σ ‰ ∅
α P VP fresh

For applications, an annotation of the form @pΣ1,Σ2q must be produced. In
order to find some instantiations Σ1 and Σ2 (for x1 and x2 respectively) that make
the application typeable, the [App] rule solves the tallying instance tallyptt1ρ1 9ď

t2ρ2 Ñ αuq. The purpose of ρ1 and ρ2 is to decorrelate type variables in Γpx1q and
in Γpx2q. For instance, assume we want to reconstruct the instantiations for the atom
x x with Γpxq “ β Ñ β. The tallying instance tallyptβ Ñ β 9ď pβ Ñ βq Ñ αuq yields
only a very specific, uninteresting solution (i.e., α “ β “ µX. X Ñ X) because
of the use of the same type variable β on both sides of 9ď. But each occurrence
of x has a polymorphic type that can be instantiated independently. Thus, we
remove this useless and constraining dependency by refreshing the generic type
variables yielding tallyptβ1 Ñ β1 9ď pβ Ñ βq Ñ αuq which has interesting solutions,
in particular tβ1 ⇝ β Ñ β ; α⇝ β Ñ βu.

The side-condition Σ ‰ ∅ ensures that the tallying instance has at least one
solution (otherwise the annotation produced would be invalid).

[Case0]
σ P tallyptΓpxq 9ď 0uq

Γ $S x(xPτ) ? x1 : x2 | typy ñ 0ptσuq

[Case1]
σ P tallyptΓpxq 9ď τuq

Γ $S x(xPτ) ? x1 : x2 | typy ñ P1ptσuq
x1 P dompΓq

[Case2]
σ P tallyptΓpxq 9ď ␣τuq

Γ $S x(xPτ) ? x1 : x2 | typy ñ P2ptσuq
x2 P dompΓq

For type-cases, we need to determine which rule of the algorithmic type system
should be applied between [0-Alg], [P1-Alg], and [P2-Alg]. The rule [Case0]
applies in priority, checking using tallying whether there exists a substitution σ such
that Γpxqσ ď 0. If such an instantiation exists, then the type-case can be typed
with the algorithmic rule [0-Alg], and thus the annotation 0ptσuq is returned. Note

136 Chapter 6. Reconstruction Algorithm

that there might be several solutions to the tallying instance, but we only need to
return one of them: this is different from the rules for projections and applications,
where all the solutions to the tallying instance are returned in order for the resulting
type to be as small as possible. Instead, we only want here to justify that 0 is an
instance of Γpxq, in order to satisfy the side-condition of [0-Alg].

If the tallying instance has no solution, then we try to apply the [Case1] rule
which checks whether the type-case can be typed using the algorithmic rule [P1-
Alg]. It proceeds similarly, using tallying to test whether there exists a substitution
σ such that Γpxqσ ď τ . Finally, if this tallying instance has no solution or if
x1 R dompΓq, then it means that the type-case should be typed using the algorithmic
rule [P2-Alg]. In this case, the rule [Case2] applies, and we know it will succeed
(otherwise the intermediate annotation would not be typ).

[Lambda]
Γ, x : u $S xκ | Ky ñ k

Γ $S xλx.κ | λpu,Kqy ñ λpu,kq

The rule for λ-abstraction is straightforward: it just proceeds recursively on its
children annotation.

[BindVar]
ρ “ refreshpΓpxqq

Γ $S xx | typy : ρ

[BindSkip]
Γ $S xκ | Ky ñ k

Γ $S xbind x = a inκ | skip Ky ñ skip k
x R dompΓq

[BindKeep]

Γ $S xa | Ay ñ a Γ $A ra | as : s

p@i P Iq Γ, x : s^ ui $S xκ | Kiy ñ ki

Γ $S xbind x = a inκ | keep pA,∅, tpui,KiquiPIqy ñ k
tuiuiPI P Partp1q

where k “ keep pa, tpui,kiquiPIq.
The rule [BindKeep] takes as input an intermediate annotation keep pA,S,S 1q,

with S “ ∅ since the intermediate annotation given as input should be in a terminal
state (all branches should have been fully reconstructed by the main reconstruction
algorithm). The rule recursively transforms the intermediate annotation A for the
definition a into an annotation a for the algorithmic type system, and uses it to
type a. It can then update the environment and proceed recursively on the body κ,
for each branch in S 1.

[Inter]
p@i P Iq Γ $S xη | Hiy ñ hi

Γ $S xη |
Ź

p∅, tHiuiPIqy ñ
Ź

pthiuiPIq
I ‰ ∅

Lastly, the rule [Inter] takes as input an annotation
Ź

pS1, S2q and recursively
builds annotations for each branch in S2. Similarly to the [BindKeep] rule, it

6.4. Backpropagation of splits 137

requires S1 “ ∅ because the intermediate annotation given as input should be in a
terminal state.

This substitution inference system is sound, meaning that if it produces an
annotation for the algorithmic type system, then this annotation is valid (it allows
deriving a type for the corresponding atom or form):

Theorem 9 (Soundness). If Γ $S xκ | Ky ñ k, then Dt. Γ $A rκ | ks : t.
If Γ $S xa | Ay ñ a, then Dt. Γ $A ra | as : t.

Proof. We proceed by structural induction on the derivation of Γ $S xκ | Ky ñ k

or Γ $S xa | Ay ñ a.
If the derivation Γ $S xa | Ay ñ a has an [App] root, we construct a

derivation Γ $A ra | as : t (for some t) with a [ÑE-Alg] root. In order to satisfy
the side-conditions of the rule [ÑE-Alg], we need to prove that the annotation
@pΣ1,Σ2q generated by the [App] root satisfies Γpx1qΣ1 ď 0 Ñ 1 and Γpx2qΣ2 ď

dompΓpx1qΣ1q.
We have, in the premise of the [App] root, Σ “ tallyptΓpx1qρ1 9ď Γpx2qρ2 Ñ

αuq and Σ ‰ ∅. Let σ P Σ. By definition of the tallying problem, we have
pΓpx1qρ1qσ ď pΓpx2qρ2 Ñ αqσ, which can be rewritten Γpx1qpσ ˝ ρ1q ď pΓpx2qpσ ˝
ρ2qq Ñ pασq. From that subtyping relation, we can deduce Γpx1qpσ˝ρ1q ď 0 Ñ 1,
and by definition of domp.q, Γpx2qpσ ˝ ρ2q ď dompΓpx1qpσ ˝ ρ1qq. As pσ ˝ ρ2q P Σ2

and pσ ˝ ρ1q P Σ1, we deduce Γpx1qΣ1 ď 0 Ñ 1 and Γpx2qΣ2 ď dompΓpx1qΣ1q (we
use the fact that domp.q is monotonically non-increasing, cf. Definition 10).

The other cases are similar or straightforward.

6.4 Backpropagation of splits

The split backpropagation system defined in this section deals with the following
problem: given an environment Γ, an atom a and a type t, how can Γ be constrained
so that a has type t?

This system is used in the main reconstruction system, by the [BindKeep2] rule,
in order to propagate type decompositions made by bindings. It produces judgments
of the form Γ $B pa : uq ñ

L
, where

L
is a set of type environments containing

only monomorphic types, and such that intersecting Γ with any type environment
in

L
makes the type u derivable for a. Note that all the deduction rules below are

axioms: they do not make any recursive call.

[Const1]
bc ď u

Γ $B pc : uq ñ t∅u
[Const2]

Γ $B pc : uq ñ tu

The case of a constant c is straightforward, as the type of a constant does not
depend on the type environment. If c has type u, then t∅u is returned (with ∅

138 Chapter 6. Reconstruction Algorithm

being the empty environment): this captures the fact that no additional assumption
is required for c to have type u. Otherwise, c cannot be typed with u, and thus tu
is returned, meaning that there is no refinement of Γ that can make c have the type
u.

[Var1]
Γpxq ď u

Γ $B px : uq ñ t∅u
[Var2]

Γ $B px : uq ñ tu

The rules for lambda variables are quite similar to the rules for constants, which
might seem surprising. Indeed, when Γpxq ę u, we could nonetheless make x have
the type u by adding the hypothesis x : u to our type environment. Thus, we
could expect the rule [Var2] to return ttpx : uquu instead of tu. However, the type
environments Γ1 P

L
generated by a Γ $B pa : uq ñ

L
judgment should only contain

binding variables (i.e., dompΓ1q Ď VarsB). Indeed, as explained in Section 6.2, $B
judgments are used to propagate type decompositions between binding variables.
Lambda variables are not involved in this mechanism: a type decomposition does
not directly occur on a lambda variable x, but instead on the associated binding
variable bind x =x inκ .

[Pair]
u »

dnf
p
Ž

iPIpui ˆ viqq _ . . .

Γ $B ppx1, x2q : uq ñ ttx1 : uiu ^ tx2 : viu | i P Iu

For pairs, we decompose the type u into a union of atomic products
Ž

iPIpui ˆ viq

and other atoms. For that, we proceed as follows:

1. Using the DNF decomposition defined in Section 2.5, we can decompose u
into a union

Ž

iPI

`
Ź

aPPi
a^

Ź

aPNi
␣a

˘

with a ranging over atoms A.

2. Summands that contain atoms that are not products are ignored (in the rule
above, they are captured by the . . . notation).

3. In every remaining summand, negative atomic products can be transformed
into a union of positive atomic products (␣ptˆ sq » p␣tˆ1q_ p1ˆ␣sq), and
using distributivity we can push these unions at top-level, yielding a decom-
position

Ž

iPI

`
Ź

aPPi
a

˘

.

4. Every intersection
Ź

aPPi
a can be transformed into an atomic product type ai

(pt1 ˆ s1q ^ pt2 ˆ s2q » t1 ^ t2 ˆ s1 ^ s2), yielding a decomposition
Ž

iPI ai.

Note that this decomposition is not unique: for instance, the type pBoolˆ Trueq _

pTrueˆBoolq is equivalent to pFalseˆTrueq_pTrueˆBoolq and to pBoolˆTrueq_

pTrueˆ Falseq. Also note that we may have I “ ∅ (in particular, if u is a subtype
of ␣p1ˆ 1q).

[Proj1]
Γ $B pπ1x : uq ñ ttx : uˆ 1uu

[Proj2]
Γ $B pπ2x : uq ñ ttx : 1ˆ uuu

6.4. Backpropagation of splits 139

The rules for projections are straightforward.
For an application x1x2, we have the choice between trying to find a refinement

for the type of x1, or trying to find a refinement for the type of x2 (or both at the
same time). For instance, let us consider the example of Section 6.2, where we had
a binding bind y = f x in . . . with initially f : α Ñ α and x : Bool. After splitting
the type of y into True and ␣True, a $B judgment is used to propagate this split
to x. In order for the application f x to have the type True, we could either require
x2 : True, or x1 : pαÑ αq ^ pBoolÑ Trueq.

In order to determine which of these two refinements is better, we should deter-
mine which one yields a better type decomposition. While decomposing the type of
x2 (initially Bool) into True and BoolzTrue is useful, as seen in the example in Sec-
tion 6.2, decomposing αÑ α into pαÑ αq ^ pBoolÑ Trueq and pαÑ αqzpBoolÑ

Trueq is not really exploitable, as the second split (pα Ñ αqzpBool Ñ Trueq) only
differs with the initial type αÑ α by a negative arrow. Indeed, typing an expression
with the hypothesis f : α Ñ α or with the hypothesis f : pα Ñ αqzpBool Ñ Trueq

barely makes any difference, as negative arrows have no impact on the typing (ex-
cept on very specific examples). More generally, decomposing a functional type is
most of the time useless, except when this functional type is a disjunction of arrows.
For instance, we may want to split a functional type p1 Ñ Trueq_p1 Ñ Falseq into
1 Ñ True and 1 Ñ False.

Our rule for applications follows from this reasoning, by decomposing the type
of the function according to the summands of its DNF, and then trying to find a
type for the argument that would make the application to have type u:

[App]
Γpx1q »dnf Ž

iPI ti @i P I. tσjujPJi “ tallyptti 9ď αÑ uuq

Γ $B px1x2 : uq ñ
Ť

iPI

L
i

α P VP fresh

where, for every i P I,
L
i “ ttx1 : ptiσjqσ

1
j , x2 : pασjqσ

1
ju | j P Jiu with σ1j a type

substitution mapping each polymorphic type variable β appearing in tiσj or ασj to
either:

• 1 if β only appears in covariant positions in ασj ,

• 0 if β only appears in contravariant positions in ασj ,

• a fresh monomorphic type variable otherwise.

In order to find some types for x2 that make the type u derivable for the ap-
plication, we rely on tallying: it allows us to find all the substitutions σ such that
tiσ ď pα Ñ uqσ (with ti the type of the function, and α a fresh polymorphic type
variable representing the type of the argument), which implies ptiσq ˝ pασq ď u,
thus giving us the guarantee that the type u is derivable for x1x2 when x2 : ασ and
x1 : tiσ.

The type environments returned by $B judgments should not contain any poly-
morphic type variable, because those type environments are then used by the main
reconstruction algorithm in order to refine the type decompositions made by bind-
ings (and those decompositions cannot feature any polymorphic type variable). This

140 Chapter 6. Reconstruction Algorithm

is the reason why the substitution σ1j is applied on the resulting types, transforming
any polymorphic type variable into a monomorphic one (or alternatively, into 1 or
0 if it weakens the constraint on x2).

[Case]
Γ $B p(xPτ) ? x1 : x2 : uq ñ ttx : τ, x1 : uu, tx : ␣τ, x2 : uuu

The rule for type-cases is straightforward: for a type-case (xPτ) ? x1 : x2 to have
type u, either the tested binding variable x must have type τ and the first branch
must have type u, or the tested binding variable x must have type ␣τ and the second
branch must have type u. Note that there is a third possibility for the type-case to
have type u: it is for the tested expression x to have type 0. However, this case is not
interesting in our setting, as it does not yield any interesting type decomposition.

[Lambda]
Γ $B pλx. κ : uq ñ tu

Finally, in the case of a λ-abstraction, we return tu, meaning that no assumption
on the type environment can make the λ-abstraction to have type u. Note that this
is an approximation: there might exist some assumptions on the free variables of
the λ-abstraction that would make it have the type u. For instance, for an atom
a “def λx. y and a type u “

def 1 Ñ Int, a solution would be tpy : Intqu. However,
this scenario is very rare, as a type-case cannot directly generate a decomposition
of a function type (test types τ cannot contain arrows other than 0 Ñ 1), and as
the type of the function is not decomposed when backpropagating a split over an
application (cf. Rule [App] above). Additionally, backpropagating a split over a
λ-abstraction would be quite complex as it would require entering the body of the
λ-abstraction, and thus defining the $B judgment on canonical forms as well.

6.5 Discussion about the reconstruction algorithm

6.5.1 Termination

The deduction rules presented in this chapter define a terminating algorithm for re-
constructing annotations: first, the main reconstruction system $R is used to infer
an intermediate annotation, and then, if it succeeds, the substitution inference sys-
tem $S converts this intermediate annotation into an annotation for the algorithmic
type system.

In this section, we propose a sketch of proof justifying that the deduction rules for
the reconstruction system define a terminating algorithm. The idea of this proof is
similar to the proof of termination of the Kirby-Paris hydra game (Kirby and Paris,
1982): we can associate an ordinal number weight to each node, and this weight can
only decrease as the game (or derivation) advances. Intuitively, this non-negative
weight represents the advancement of the game (or derivation). Though subtrees

6.5. Discussion about the reconstruction algorithm 141

can sometimes be duplicated, their weight is always lowered before being duplicated,
resulting in a lower weight overall.

For every type environment Γ, canonical form or atom η, and intermediate an-
notation H, the weight wpΓ, η,Hq is the ordinal number defined as follows:

wpΓ, η, typq “ 1

wpΓ, η, untypq “ 1

wpΓ, η,
Ź

pS1, S2qq “
ř

twpΓ, η,Hq | H P S1u

wpΓ, c, inferq “ ω

wpΓ, x, inferq “ ω

wpΓ, λx.κ, inferq “ ωwpΓ,κ,inferq

wpΓ, λx.κ, λpu,Kqq “ ωwpΓ,κ,Kq

wpΓ, πix, inferq “ ω if x P dompΓq

wpΓ, πix, inferq “ ω2 otherwise

wpΓ, x1x2, inferq “ ω if tx1, x2u Ď dompΓq

wpΓ, x1x2, inferq “ ω2 otherwise, if x1 P dompΓq

wpΓ, x1x2, inferq “ ω2 otherwise, if x2 P dompΓq

wpΓ, x1x2, inferq “ ω3 otherwise

wpΓ, px1, x2q, inferq “ ω if tx1, x2u Ď dompΓq

wpΓ, px1, x2q, inferq “ ω2 otherwise, if x1 P dompΓq

wpΓ, px1, x2q, inferq “ ω2 otherwise, if x2 P dompΓq

wpΓ, px1, x2q, inferq “ ω3 otherwise

wpΓ, (x0Pτ) ? x1 : x2, Piq “ ω

wpΓ, (x0Pτ) ? x1 : x2, inferq “ ω2 if Γpx0q ď τ

wpΓ, (x0Pτ) ? x1 : x2, inferq “ ω2 otherwise, if Γpx0q ď ␣τ

wpΓ, (x0Pτ) ? x1 : x2, inferq “ ω3 otherwise, if x0 P dompΓq

wpΓ, (x0Pτ) ? x1 : x2, inferq “ ω4 otherwise

wpΓ, bind x = a inκ , skip Kq “ ωwpΓ,κ,Kq

wpΓ, bind x = a inκ , keep pA,S1,S2qq “ ωα

with α “
ř

twppΓ, x : uq, κ,Kq | pu,Kq P S1u

wpΓ, bind x = a inκ , propagate pA,
L
,S1,S2qq “ ωα`|

L
|

with α “
ř

twppΓ, x : uq, κ,Kq | pu,Kq P S1u

wpΓ, bind x = a inκ , try-keep pA,K1,K2qq “ ωα

with α “
ř

twpΓ, a,Aq, wppΓ, x : 1q, κ,K1q, wpΓ, κ,K2qu

wpΓ, bind x = a inκ , try-skip pKqq “ ωα

with α “
ř

twpΓ, a, inferq, wpΓ, κ,Kqu

142 Chapter 6. Reconstruction Algorithm

wpΓ, x, inferq “ ω if x P dompΓq

wpΓ, x, inferq “ ω2 otherwise

where, for every multiset tα1, α2, . . . , αnu,
ř

tα1, α2, . . . , αnu “
def α1 ` α2 ` ¨ ¨ ¨ ` αn

with α1 ě α2 ě ¨ ¨ ¨ ě αn.
Then, we define a weight wpΓ, η,Rq for every type environment Γ, canonical form

or atom η, and result R:

wpΓ, η, OkpHqq “ 1

wpΓ, η, Failq “ 1

wpΓ, η, SplitpΓ1,H1,H2qq “
ř

twpΓ^ Γ1, η,H1qu Y twppΓ^ tx : ␣uuq, η,H2q | px : uq P Γ1u

wpΓ, η, SubstptψiuiPI ,H1,H2qq “
ř

twpΓ, η,H2qu Y twpΓψi, η,H1ψiq | i P Iu

wpΓ, η, Var px,H1,H2qq “
ř

twppΓ, x : 1q, η,H1q, wpΓ, η,H2qu

where

Γ1 ^ Γ2 “
def

´

Γ1

ˇ

ˇ

dompΓ1qzdompΓ2q

¯

Y

´

Γ2

ˇ

ˇ

dompΓ2qzdompΓ1q

¯

Y tpx : Γ1pxq ^ Γ2pxqq | x P dompΓ1q X dompΓ2qu

Lemma 36. For every Γ, η,H, and Γ1 such that Γ1 ď Γ, we have wpΓ1, η,Hq ď
wpΓ, η,Hq.

Proof. Structural induction on η and H.

Lemma 37. For every Γ, η,H, and ψ, we have wpΓψ, η,Hψq ď wpΓ, η,Hq.

Proof. Structural induction on η and H. For type-cases, we recall that test types
τ do not contain type variables, and thus if Γpx0q ď τ , then Γpx0qψ ď τψ » τ .

Lemma 38. If Γ $R xη | Hy ñ R or Γ $˚R xη | Hy ñ R, then wpΓ, η,Hq ŋ
wpΓ, η,Rq.

Proof. Structural induction on the derivation of Γ $R xη | Hy ñ R or Γ $˚R
xη | Hy ñ R.

Theorem 10 (Termination). The deduction rules $˚R and $R define a termi-
nating algorithm: it can either fail (if no rule applies at some point) or return a
result R.

6.5. Discussion about the reconstruction algorithm 143

Proof. There can only be finitely many [Iterate1] and [Iterate2] nodes applied
on a given canonical form or atom, otherwise, according to the previous lemmas,
we could extract from them an infinite decreasing chain of ordinal numbers.

6.5.2 Incompleteness

Although terminating, the reconstruction algorithm is not complete: it may fail to
find an annotation for a MSC form even if there exists such an annotation that
would make the MSC form typeable with the algorithmic type system.

Non-principality The incompleteness of the reconstruction algorithm is inherent
to our system and derives from the lack of type principality: for a type environment
Γ and an expression e that is typeable under Γ, there does not necessarily exist a
principal type t such that Γ $ e : t and @t1. Γ $ e : t1 ñ tŸt1. For instance, consider
the expression pf 42, f 42q with f : 1 Ñ 1 (our reconstruction algorithm infers the
type 1 ˆ 1 for this expression). For any type t, using the union-elimination rule,
this expression can be typed tˆ t_␣tˆ␣t. Consequently, a principal type for this
expression must be smaller than tˆ t_␣tˆ␣t for every type t, thus capturing the
fact that the left and right component of the pair are ultimately the same value.
Unfortunately, this constraint cannot be expressed with our types, as we would need
an infinite intersection.

Another more common example showing the lack of principal typing is the func-
tion map, which will be detailed in Chapter 9. Briefly, our type system can check
that, for a fixed n, applying map on a list of length n yields a list of the same length
n. However, no type can capture this property for every n: again, we would need
an infinite intersection (or dependent types).

In other words, incompleteness stems from the fact that the declarative system
can use all the infinitely many decompositions of unions in the union-elimination
rule, and the infinitely many decompositions of the domain of a function when
reconstructing its type as an intersection of arrows. The algorithmic counterpart of
this, is that there are infinitely many annotations that the algorithmic system can use
to type these expressions and that these infinite choices cannot be summarized by a
notion of principal annotation: the reconstruction chooses one particular annotation,
and therefore it will miss some solutions.

Type expansion There is a second source of incompleteness in the reconstruction
algorithm: it does not perform the so-called “expansion” of intersection types.

Sometimes, typing an application may require to perform an expansion of the
types. For instance, consider the application g f , where f is the polymorphic identity
function of type αÑ α, and g is a function of type pIntÑ Intq^pBoolÑ Boolq Ñ 1
(we recall that ^ has precedence over Ñ). The tallying instance for the constraints
C “ tppInt Ñ Intq ^ pBool Ñ Boolq Ñ 1, pα Ñ αq Ñ βqu has no solution,
because no type substitution can make α Ñ α to become a subtype of pInt Ñ
Intq ^ pBool Ñ Boolq. In order to type this application, we need to expand the

144 Chapter 6. Reconstruction Algorithm

type of f into pα1 Ñ α1q ^ pα2 Ñ α2q. Unfortunately, we have no way, in general,
to know how many times a type should be expanded.

In the rule [App] in Section 6.3, tallying is applied without expanding the types
in the constraint, which is a source of incompleteness. In some related work, such as
Castagna et al. (2015), expansion is automatically performed when tallying fails
to type an application: if the tallying instance tallyptt1ρ1 9ď t2ρ2 Ñ αuq fails,
then the type t1 of the function is expanded, yielding the new tallying instance
tallyptt1ρ1^ t1ρ3 9ď t2ρ2 Ñ αuq, and so on and so forth by alternating expansions on
the function and on the argument types (see (Castagna et al., 2015, Section 3.2.3)
for more details). However, this heuristics may not terminate (unless we fix a maxi-
mal number of expansions) and is still incomplete: it does not handle the case where
the tallying instance has a solution but where performing an expansion may yield a
strictly more precise type for the application.

Despite incompleteness, the declarative rules of Figure 4.1 form a reliable guide
to which programs are accepted, provided we bear in mind that the reconstruction
algorithm approximates data structures according to the tests performed on them.
So, typically, the type reconstructed for a function on lists will probably differentiate
the cases for empty and not-empty lists, but not for, say, lists of size 42, unless the
function contains an explicit test for it. This (and to a lesser extent, expansion) is
essentially the main difference with the declarative system, which has the liberty to
deduce the type for the case of lists of size 42, even if this property is not tested in
the body of the function.

We will see in Chapter 7 how explicit type annotations can be added to the
language, allowing to guide the reconstruction in the cases where it fails to find a
suitable type.

Part III

Towards a Practical Language

Chapter 7

Extensions

Contents
7.1 Records . 147

7.2 User type annotations . 153

7.3 Let-bindings . 155

7.4 Extended type-cases . 159

7.5 Pattern matching . 163

This chapter focuses on adding some new constructions to our language, and
extending the type system accordingly.

The first extension adds to the language record types and record expressions,
together with primitive operations to manipulate their values. Then we provide
the user with a way to guide the type-inference algorithm by means of user type
annotations for function parameters. We then show how to add local let-bindings to
the language as well as extended type-case constructs. While interesting in their own
rights these last two extensions are building blocks of a more powerful construct,
namely pattern-matching.

7.1 Records

Many languages have extensible records as a built-in data structure. In particular,
in languages such as JavaScript, the fundamental object type is implemented as an
extensible record. More generally, object types from oriented-object languages can
be encoded as record types mapping some labels to functional types (for methods)
or data types (for attributes). When encoded in this way, the semantic subtyping
relation over record types yields a structural subtyping relation over classes.

Record expressions are sometimes an afterthought in the definition of a calculus,
as their semantics can typically be reduced to that of pairs. Extending their op-
erations beyond projection to include field update and deletion, however, warrants
additional attention.

Syntax and semantics

The empty record constant is added to the source language, as well as some oper-
ations: record update, field deletion, and field projection. Record values consist of

148 Chapter 7. Extensions

the empty records and the record update expressions whose constituent expressions
are themselves values. This is formalized in Figure 7.1.

Syntax

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e
| {} | {e with ℓ = e} | ezℓ | e.ℓ

Value v ::“ c | λx.e | pv, vq | {} | {v with ℓ = v}

Additional reduction rules

{v1 with ℓ = v}.ℓ ⇝ v

{}zℓ ⇝ {}

{v1 with ℓ1 = v}.ℓ ⇝ v1.ℓ if ℓ1 ı ℓ

{v1 with ℓ = v}zℓ ⇝ v1zℓ

{v1 with ℓ1 = v}zℓ ⇝ {v1zℓ with ℓ1 = v} if ℓ1 ı ℓ

Evaluation Context

E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e
| {E with ℓ = e} | {v with ℓ = E} | Ezℓ | E.ℓ

Figure 7.1: Syntax and semantics of the language with records

Reduction of record expressions is straightforward. It is worth noting that in
this representation, multiple identical labels may exist in a record expression, but
this is equivalent to limiting to one label, as projection reduces to the last-applied
field, and deletion removes all instances of a label from the record. Evaluation of
the expressions is performed left-to-right, as in the rest of the language.

To reduce verbosity, we use syntactic sugar for nonempty records. Assuming
all the labels are distinct, {{{{} with ℓ1 = e1} with ℓ2 = e2} . . . with ℓn = en} is
represented by {ℓ1 “ e1, ℓ2 “ e2, . . . , ℓn “ en}.

Record types

In the syntax for record types, we distinguish between two kinds of record types. An
open record type, denoted by {{{}}}, is the type of records whose labels include
those explicitly written. A closed record type, denoted by {{{ . . .}}}, is the type of
records whose labels are exactly those explicitly written.

Types t ::“ ¨ ¨ ¨ | {{{f, . . . , f}}} | {{{f, . . . , f ..}}}
Fields f ::“ ℓ = t | ℓ =? t

The semantics of record types we use is the one by Frisch (2004), where record
values are quasi constant functions, that is, functions that map labels into values
of our interpretation domain D (cf. Definition 6) and are constant apart from on a
finite number of labels. A value of a closed record type {{{ℓ1 = t1, ℓ2 = t2}}} maps ℓ1 into
a value of type t1, ℓ2 into a value of type t2 and all other labels into the constant
undef meaning that the field is “absent”. This constant undef is not a value of

7.1. Records 149

our language. The associated type, Undef, can be seen as the type of the result of
projection of a missing label. Undef is particular in that it is disjoint from 1, that
is, Undef^1 » 0. This representation allows us to encode open record types, whose
interpretation contains quasi constant functions where all the labels not explicitly
written are mapped to a value of D (not necessarily undef).

The syntax of types does not allow us to explicitly refer to the Undef type. The
open/closed record syntax provides a way to set it for the infinitely many constant
fields that are not explicitly written in the record type. For a single label, the access
to the Undef type is provided via the syntax of fields. There are two kinds of fields:
ℓ = t, which indicates that the field is present in the record and that the associated
value has type t, and ℓ =? t, which is a syntactic sugar for ℓ = pt_Undefq, indicating
that a label ℓ may be present, and if so, the associated value has the type t. Note
the special case ℓ =? 0, which indicates that the field for ℓ is absent.

The subtyping relation defined in Chapter 2 can be extended to support records.
This will not be formalized here, but the reader may refer to Frisch (2004) for more
details. Using this subtyping relation, we can define the following three operators1:

t.ℓ “

"

mintu | {{{ℓ = u ..}}} ě tu if t ď {{{ℓ = 1 ..}}}
mintu | {{{ℓ =? u ..}}} ě tu _ Undef otherwise

(7.1)

t1 ` t2 “ min

"

u

ˇ

ˇ

ˇ

ˇ

@ℓ P Labels.
"

u.ℓ ě t2.ℓ if t2.ℓ ď 1
u.ℓ ě t1.ℓ_ pt2.ℓzUndefq otherwise

*

(7.2)

tzℓ “ min

"

u

ˇ

ˇ

ˇ

ˇ

@ℓ1 P Labels.
"

u.ℓ1 ě Undef if ℓ1 ” ℓ

u.ℓ1 ě t.ℓ1 otherwise

*

(7.3)

Record projection (7.1) represents the union of the possible types the label ℓ
could have, and also contains undef if the record type does not surely have a label ℓ.
Record concatenation (7.2) is the right-favored merging of two records. If a label
is present in just one of the records, then the type of that label is used. If it is
present in both records, the type of the right label is used. Record label deletion
(7.3) marks the label as undef. These operators can be computed from the DNF of
record types, similarly to other type operators defined in Section 2.5. Finally, the
tallying algorithm is updated to support subtyping constraints involving records.

1The sets defined in definitions 7.2 and 7.3 may not have a minimal element. Any element of
these sets can be used as an approximation of these operators.

150 Chapter 7. Extensions

Extension of the type system

Declarative type system The following typing rules are added to the declarative
type system:

[Record]
Γ $ {} : {{{}}}

[Update]
Γ $ e1 : t1 Γ $ e2 : t2

Γ $ {e1 with ℓ = e2} : t1 ` {{{ℓ = t2}}}
t1 ď {{{ ..}}}

[Delete]
Γ $ e : t

Γ $ ezℓ : tzℓ
t ď {{{ ..}}} [Select]

Γ $ e : t

Γ $ e.ℓ : t.ℓ
t ď {{{ℓ = 1 ..}}}

The empty record value has the closed record type. Record update uses the type
operator for extension and is defined provided that the type of e1 is a record type
(i.e., t1 ď {{{ ..}}}). Field deletion uses the corresponding type operator and so does
field projection provided that the selected field ℓ is present in the expression e (i.e.,
t ď {{{ℓ = 1 ..}}}). This ensures that t.ℓ does not contain undef.

Algorithmic type system The grammar of atoms is extended with the empty
record constant, record updates, record deletions and record projections:

Atomic expr a ::“ c | x | λx.κ | px, xq | xx | πix | (xPτ) ? x : x
| {} | {x with ℓ = x} | xzℓ | x.ℓ

The J.K transformation that maps expressions of the source language to canonical
forms is extended with the following cases, where x˝ is a fresh binding variable:

J{}K “ ppx˝, {}q, x˝q

J{e1 with ℓ = e2}K “ ppB1;B2; px˝, {x1 with ℓ = x2}qq, x˝q

where pB1, x1q “ Je1K, pB2, x2q “ Je2K

JezℓK “ ppB; px˝, xzℓqq, x˝q where pB, xq “ JeK

Je.ℓK “ ppB; px˝, x.ℓqq, x˝q where pB, xq “ JeK

The algorithmic type system can then be extended with the following rules:

[Record-Alg]
Γ $A r{} | ∅s : {{{}}}

[Update-Alg]
Γ $A r{x with ℓ = y} | =pΣ, ρqs : t1 ` {{{ℓ = Γpyqρ}}}

t1 “ ΓpxqΣ
t1 ď {{{ ..}}}

[Delete-Alg]
Γ $A rxzℓ | zpΣqs : tzℓ

t “ ΓpxqΣ
t ď {{{ ..}}}

[Select-Alg]
Γ $A rx.ℓ | .pΣqs : t.ℓ

t “ ΓpxqΣ
t ď {{{ℓ = 1 ..}}}

In these rules:

7.1. Records 151

• =pΣ, ρq annotates record updates {x with ℓ = y}, where Σ is used to instantiate
x so that it satisfies the side condition, and ρ is just a renaming of polymorphic
type variables applied to the type of y to avoid correlations with the type of
x,

• zpΣq annotates field deletions xzℓ, where Σ is used to instantiate x so that it
satisfies the side condition,

• .pΣq annotates field projections x.ℓ, where Σ is used to instantiate x so that it
satisfies the side condition.

The sets of substitutions Σ in these annotations are needed for completeness.
For instance, when typing x.ℓ with x : α, we can use the [Select-Alg] rule with the
set of substitutions t tα⇝ {{{ℓ = t}}}u u (for any t) in order to satisfy the side-condition
and derive the type t.

Main reconstruction system The main reconstruction algorithm is extended
with the following rules:

[UpdateVari]
xi R dompΓq

Γ $R x{x1 with ℓ = x2} | infery ñ Var pxi, infer, untypq

[UpdateInfer]
Ψ “ tally_inferpΓpx1q 9ď {{{ ..}}}q x2 P dompΓq

Γ $R x{x1 with ℓ = x2} | infery ñ SubstpΨ, typ, untypq

[DeleteVar]
x R dompΓq

Γ $R xxzℓ | infery ñ Var px, infer, untypq

[DeleteInfer]
Ψ “ tally_inferpΓpxq 9ď {{{ ..}}}q

Γ $R xxzℓ | infery ñ SubstpΨ, typ, untypq

[SelectVar]
x R dompΓq

Γ $R xx.ℓ | infery ñ Var px, infer, untypq

[SelectInfer]
Ψ “ tally_inferpΓpxq 9ď {{{ℓ = α ..}}}q

Γ $R xx.ℓ | infery ñ SubstpΨ, typ, untypq
α P VP fresh

These rules are similar to the rules for pair projection. For instance,
[DeleteVar] ensures that the binding variable x is in the environment, while
[DeleteInfer] uses tallying to find some instances of the current context that
make x a subtype of {{{ ..}}}, thus making the side conditions of the rule [Delete-
Alg] satisfiable.

152 Chapter 7. Extensions

Substitution inference system The substitution inference system is extended
with the following rules:

[Update]
Σ “ tallyptΓpx1q 9ď {{{ ..}}}uq ρ “ refreshpΓpx2qq

Γ $S x{x1 with ℓ = x2} | typy ñ =pΣ, ρq

[Delete]
Σ “ tallyptΓpxq 9ď {{{ ..}}}uq
Γ $S xxzℓ | typy ñ zpΣq

[Select]
Σ “ tallyptΓpxq 9ď {{{ℓ = α ..}}}uq

Γ $S xx.ℓ | typy ñ .pΣq
α P VP fresh

Again, these rules follow those for pair projection. They use tallying to find
an instantiation Σ that satisfy the side conditions of the corresponding rules in the
algorithmic type system.

Split backpropagation system The split backpropagation system is extended
with the following rules:

[Update]
u^ {{{ℓ = 1 ..}}} »dnf

p
Ž

iPI aiq _ . . .

Γ $B p{x1 with ℓ = x2} : uq ñ ttx1 : paizℓq ` {{{ℓ =? 1}}}, x2 : ai.ℓu | i P Iu

[Delete]
u^ {{{ℓ =? 0 ..}}} »dnf

p
Ž

iPI aiq _ . . .

Γ $B pxzℓ : uq ñ ttx : ai ` {{{ℓ =? 1}}}u | i P Iu

[Select]
Γ $B px.ℓ : uq ñ ttx : {{{ℓ = u ..}}}uu

with ai ranging over atomic record types (open or closed).
An expression {x1 with ℓ = x2} can only produce records that surely have a

field ℓ. Thus, we can intersect u with {{{ℓ = 1 ..}}} in Rule [Update] without loss of
generality. Then, in the DNF of the result, we consider among the summands of the
outer union those composed only of an atomic record type (the other summands are
captured by . . .), similarly to the [Pair] rule in Section 6.4. For each such summand
ai, we can ensure that {x1 with ℓ = x2} has type ai (and thus u) by giving to x2 the
type ai.ℓ and to x1 the type paizℓq ` {{{ℓ =? 1}}}, which intuitively corresponds to the
type ai in which we removed any information about the field ℓ.

The idea behind the [Delete] rule is similar. The type {{{ℓ =? 0 ..}}} corresponds
to records whose field ℓ is absent, while the type ai ` {{{ℓ =? 1}}} corresponds to the
type ai in which we removed any information about the field ℓ (the deletion of the
field ℓ is not necessary this time as the field ℓ is already absent in ai).

Finally, the [Select] rule is similar to the rules [Proji] of Section 6.4: in order
for x.ℓ to have type u, we can just suppose that x has type {{{ℓ = u ..}}}.

7.2. User type annotations 153

7.2 User type annotations

Our type system features type inference, so that the user does not have to write
type annotations. Nevertheless, we present in this section an extension of the core
language that allows one to annotate λ-abstractions. Type annotations may serve
several purposes:

Incompleteness As discussed in Chapter 6, our reconstruction algorithm is in-
complete: it may fail to reconstruct an annotation tree for an expression that
is typeable with the declarative type system. User type annotations provide a
way to guide reconstruction, and thus to type more programs.

Precision This point is related to the previous one. As we do not have principality
of typings, the user may need to write type annotations in order to derive a
more precise type for a function, or at the opposite, a simpler but less precise
type (which may improve the readability of types).

Performance The inference of the type of parameters made by the reconstruction
algorithm has a cost: it requires backtracking and inserting intersection nodes
that may lead to an explosion of the number of branches in the annotation
tree (this will be detailed in Chapter 8). Writing user type annotations is a
way to prevent this explosion and to improve performance.

Signature restriction Type annotations allow the user to restrict the domain of
a function. For instance, the user might want to define a function λx.x ` x

that returns the double of an integer. However, if the + operator is overloaded,
allowing to also concatenate strings, then the type inferred for the function
λx.x ` x will be pInt Ñ Intq ^ pString Ñ Stringq. User type annotations
provide a way to restrict the domain of this function to Int.

Better error messages User type annotations can be used to generate more rele-
vant error messages. Indeed, when the body of a λ-abstraction is not typeable
under a given context, the type system does not know whether it is because
of an error in the program or if it is because the domain of the λ-abstraction
needs to be restrained, in which case it may remove the current branch with-
out raising any error message. Adding type annotations to the parameter of
a λ-abstraction solves this issue: if the body cannot be typed for a parameter
whose type has been explicitly written by the user, then we know that an error
should be raised.

Syntax and semantics

We add to the source language a new construct for λ-abstractions that allows spec-
ifying its domain:

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e
| λpx : u ; . . . ; uq.e

154 Chapter 7. Extensions

There are two things to note about this new construct λpx : u1 ; . . . ; unq.e.
First, the types used for annotations are monomorphic types. Indeed, as this

corresponds to the type of the parameter x of the λ-abstraction, it should not be
polymorphic. Actually, we restrict it even further: we consider a special subset
VU of VM , whose elements are called user type variables, and we require that the
types used for annotations only contain user type variables. Formally, we require
@i P 1 . . n. varspuiq Ď VU . Doing so allows keeping track of which type variables
have been introduced by the user.

Secondly, the parameter x is annotated with a list of types instead of a unique
type. This allows specifying multiple types for the parameter, each of those types
yielding a separate branch and thus allowing to capture overloaded behaviors.

Note that these type annotations are different from the explicitly-typed λ-
abstractions that are usually used in set-theoretic type systems, such as in Castagna
et al. (2014), and that are annotated with the full function type

Ź

iPI si Ñ ti instead
of only the domains tsiuiPI .

User type annotations are erased by the semantics:

λpx : u ; . . . ; uq.e ⇝ λx.e

Extension of the type system

Declarative type system From the point of view of the declarative type system,
these annotations are seen as a constraint rather than an indication:

[ÑI-Ann]
Γ $ λx.e : t

Γ $ λpx : u1 ; . . . ; unq.e : t
domptq »

Ž

iP1. .n ui

Algorithmic type system The grammar of atoms is extended with user-
annotated λ-abstractions:

Atomic expr a ::“ c | x | λx.κ | px, xq | xx | πix | (xPτ) ? x : x
| λpx : u ; . . . ; uq.κ

We extend the J.K transformation that converts a term of the source language
into a canonical form as follows:

Jλpx : u1 ; . . . ; unq.eK “ ppx˝, λpx : u1 ; . . . ; unq.termJeKq, x˝q

The following rule is added to the algorithmic type system, following the behavior
of the [ÑI-Ann] rule of the declarative type system:

[ÑI-Ann-Alg]
Γ $A rλx.κ | as : t

Γ $A rλpx : u1 ; . . . ; unq.κ | as : t
domptq »

Ž

iP1. .n ui

7.3. Let-bindings 155

Reconstruction system In the reconstruction algorithm, user type annotations
are seen as an indication to initialize the annotation tree:

[LambdaInfer-Ann]
Γ $R xλx.κ |

Ź

ptλpui, inferq | i P 1 . . nu,∅qy ñ R

Γ $R xλpx : u1 ; . . . ; unq.κ | infery ñ R

[Lambda-Ann]
Γ $R xλx.κ | λpu,Kqy ñ R

Γ $R xλpx : u1 ; . . . ; unq.κ | λpu,Kqy ñ R

The reconstruction of user-annotated λ-abstractions is the same as the recon-
struction of unannotated λ-abstractions, except for the initialization. While the pa-
rameter of an unannotated λ-abstraction is initially typed with a fresh α P VMzVU ,
the parameter of a user-annotated λ-abstraction is initially typed according to the
user annotation (Rule [LambdaInfer-Ann]). An intersection annotation is used
to handle the case where multiple types are specified in the user annotation.

Two additional changes must be applied to the main reconstruction system.
First, the type variables in VU should not be substituted during the reconstruction.
Indeed, if the user specified a domain for a λ-abstraction, it is this exact domain
that should be used and not a specific instance of it. Thus, the tally_inferp.q function
should be modified so that the solutions produced do not substitute type variables
in VU . This change is straightforward: instead of generalizing every monomorphic
type variable, tally_inferp.q should only generalize type variables in VMzVU before
calling tallyp.q.

Secondly, the following rule should be added to the rules handling the intersection
annotations, with a higher priority over them:

[InterFail-Ann]
Γ $˚R xλpx : u1 ; . . . ; unq.κ | Ay ñ Fail

Γ $R xλpx : u1 ; . . . ; unq.κ |
Ź

ptAu Y S, S1qy ñ Fail

This rules modifies the behavior of the reconstruction algorithm when a branch of
an intersection fails, if this intersection comes from a user-annotated λ-abstraction.
Instead of removing the branch and continuing the reconstruction with the other
branches, it makes the reconstruction fail for this λ-abstraction, because it is not
typeable for one of the domains specified by the user.

7.3 Let-bindings

Syntax and semantics

An essential construct of every functional language is the let-binding. With the
notion of programs, our language already features top-level let constructs. However,
we are interested here in adding a local let-binding to the syntax of expressions (and
not programs), as defined in Figure 7.2. We use the usual call-by-value semantics,
where the definition is reduced before the body.

156 Chapter 7. Extensions

Syntax

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e | letx = e in e
Value v ::“ c | λx.e | pv, vq

Additional reduction rules

letx = v in e ⇝ etv{xu

Evaluation Context

E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e | letx =E in e

Figure 7.2: Syntax and semantics of the language with let-bindings

Declarative type system

Usually, let-bindings can be typed by adding a single rule to the type system:

[Let]
Γ $ e1 : t1 Γ, x : t1 $ e2 : t2

Γ $ letx = e1 in e2 : t2

However, this solution is not satisfactory in our case, because of the presence of
the union-elimination rule. Indeed, let-bindings can introduce aliasing, which might
prevent the application of a [_] rule, thus limiting occurrence typing. For instance,
consider the following expression, with f : 1 Ñ 1:

λx. let y =x in (f y PInt) ? pf xq ` 1 : 42

We should be able to derive the type 1 Ñ Int for this expression: as x and y

are just aliases, f y and f x both reduce to the same value (or both diverge) and
thus we can deduce in the first branch of the type-case that f x has the type Int.

The difficulty here is that the two expressions f x and f y are not syntactically
equivalent, and thus the union-elimination rule cannot apply on those two occur-
rences. Note that the same problem is present if we choose to encode let-bindings
as applications: by encoding letx = e1 in e2 as the application pλx.e2q e1, the cor-
relation between x and e1 is lost. In order to overcome this issue, we choose to
remove aliasing before applying the declarative type system. For that, we introduce
an intermediate language featuring an alternative version of let-bindings:

Definition 72 (Intermediate language). Intermediate expressions are finite
terms produced by the following grammar:

Intermediate expression ξ ::“ c | x | λx.ξ | ξξ | pξ, ξq | πiξ | (ξPτ) ? ξ : ξ
| let ξ in ξ

7.3. Let-bindings 157

In the intermediate expression let ξ1 in ξ2 , ξ1 corresponds to the definition of
the let-binding, and ξ2 corresponds to the body. However, in order to prevent
aliasing, the definition ξ1 is inlined in ξ2, so that there is no need to associate the
definition ξ1 to a variable. Still, it is necessary to keep the definition of ξ1 (even
if this definition is not bound to a variable) in order to preserve the call-by-value
behavior of let-bindings. Indeed, in a let-binding letx = e1 in e2 , if the definition e1
is not typeable then the let-binding expression should not be typeable either, even
if x is not used in the body e2.

Let-bindings of the source language can be transformed into this intermediate
form using a transformation L.M:

Definition 73. Let e be a ground expression of the source language. The inter-
mediate expression LeM is defined inductively on e as follows:

LcM “ c

LxM “ x

Lλx.eM “ λx.LeM

Le1e2M “ Le1MLe2M

Lpe1, e2qM “ pLe1M, Le2Mq

LπieM “ πiLeM i “ 1, 2

L(ePτ) ? e1 : e2M “ (LeMPτ) ? Le1M : Le2M

Lletx = e1 in e2 M “ let Le1M in Le2MtLe1M{xu

For instance, our earlier example λx. let y =x in (f y PInt) ? pf xq ` 1 : 42 is
transformed into the intermediate expression λx. letx in (f x PInt) ? pf xq`1 : 42 ,
which can then be typed by the declarative type system by applying the union-
elimination rule on both occurrences of f x.

As another example, consider the expression λx. let y = 42 42 in (xPInt) ?x : y .
It is transformed into λx. let 42 42 in (xPInt) ?x : 42 42 , which is not typeable:
the definition of the let-binding, 42 42, must be typed in all contexts, even if it is
only used in the second branch of the type-case.

Note that, just like the [_] rule, this transformation relies on the fact that our
language is pure. In the presence of side effects, this transformation may not preserve
the semantics, as inlining the definition e1 in the body e2 could duplicate the side
effects of e1.

Now, the declarative type system takes as input an intermediate expression
instead of a source expression, and is extended with this rule:

[Let]
Γ $ ξ1 : t1 Γ $ ξ2 : t2

Γ $ let ξ1 in ξ2 : t2

It checks that the definition ξ1 is typeable, and then proceed with typing the
body ξ2.

158 Chapter 7. Extensions

Notice that, by inlining let-definitions, the L.M transformation may duplicate
some subterms and thus increase the size of the term. Fortunately, this expansion
does not happen in the MSC form, defined below, as the duplicated subterms are
factorized into a unique binding.

Algorithmic type system

Let-bindings are added to MSC forms as new atoms:

Atomic expr a ::“ c | x | λx.κ | px, xq | xx | πix | (xPτ) ? x : x | let x in x

The intuition is the same as for the declarative type system: we want to get
rid of the aliasing caused by let-bindings. To produce an atom for the expression
letx = e1 in e2 , each subexpression must be replaced by a binding variable, yielding
letx = x1 in x2 . Now, it means that the variable x is only an alias for x1, which
is undesirable. Consequently, we make let-binding atoms not introduce any new
variable, which explains the let x1 in x2 syntax.

We extend the definition of J.K of Section 5.1.1 with the let-binding case. The J.K
operator is used to transform an expression of the source language into a canonical
form expression, but from now on it will take as input an intermediate expression
instead of an expression of the source language (the transformation from source
language to intermediate language is handled by L.M).

Jlet ξ1 in ξ2 K “ ppB1;B2; px˝, let x1 in x2 qq, x˝q
where pB1, x1q “ Jξ1K, pB2, x2q “ Jξ2K

and x˝ is a fresh binding variable

For instance, the expression letx =λy.y in px, xq of the source language is first
transformed into the expression letλy.y in pλy.y, λy.yq of the intermediate language
using the operator L.M, and then it is transformed into the following canonical form
using J.K:

bind x1 = pλy.bind y = y in y q in
bind x2 = pλy.bind y = y in y q in
bind x3 = pλy.bind y = y in y q in
bind x4 = px2, x3q in
bind x5 = plet x1 in x4 q in
x5

Finally, the different occurrences of λy.bind y = y in y are factorized by applying the
99K rewriting rules (Figure 5.1), yielding the following MSC form:

bind x1 = pλy.bind y = y in y q in
bind x2 = px1, x1q in
bind x3 = plet x1 in x2 q in
x3

7.4. Extended type-cases 159

The algorithmic type system can then be extended with this simple rule (with
∅ the annotation associated to let-bindings):

[Let-Alg]
Γ $A rlet x1 in x2 | ∅s : Γpx2q

x1 P dompΓq

Reconstruction algorithm

The reconstruction rules are straightforward, as a let-binding is similar to a pair:
for a let-binding to be typeable, the two binding variables composing it must be
typeable.

Main reconstruction system

[LetVari]
xi R dompΓq

Γ $R xlet x1 in x2 | infery ñ Var pxi, infer, untypq

[LetOk]
Γ $R xlet x1 in x2 | infery ñ Okptypq

If one of the binding variables composing the let-binding has not been typed yet, the
rule [LetVari] applies and ask to type it. Otherwise, [LetOk] applies and states
that the let-binding is typeable.

Substitution inference system

[Let]
Γ $S xlet x1 in x2 | typy ñ ∅

This rule is trivial since let-bindings are annotated with ∅ in the algorithmic type
system.

Split backpropagation system

[Let]
Γ $B plet x1 in x2 : uq ñ ttx2 : uuu

In order for a let-binding let x1 in x2 to have type u, we just need x2 to have type
u.

7.4 Extended type-cases

In this section, we extend our language with a more general type-case construct,
allowing to dispatch between an arbitrary number of branches at once instead of
just two.

160 Chapter 7. Extensions

Syntax and semantics

Extended type-cases tcase e of τ1 Ñ e1 | . . . | τn Ñ en are quite similar to ternary
type-cases (ePτ) ? e : e. Both of them act like a dynamic dispatch, executing a
branch selected at run-time depending on the type of an expression. However,
instead of dispatching among two branches depending on the result of a unique type
test, extended type-cases can have an arbitrary number of branches, each guarded
by a type.

The syntax and semantics of extended type-cases is formalized in Figure 7.3.

Syntax

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e | letx = e in e
| ptcase e of τ Ñ e | . . . | τ Ñ eq

Value v ::“ c | λx.e | pv, vq

Additional reduction rules

For every n P N˚ and k P 1 . . n:

tcase v of τ1 Ñ e1 | . . . | τn Ñ en ⇝ ek if v P τkzp
Ž

iP1. .k´1 τiq

Evaluation Context

E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e | letx =E in e

| ptcaseE of τ Ñ e | . . . | τ Ñ eq

Figure 7.3: Syntax and semantics of the language with extended type-cases

Type constraints

From the perspective of the type system, we choose to encode extended type-cases
using ternary type-cases in order to avoid having redundant typing rules. However,
one ingredient is missing: while we can encode a dispatch between n branches
by combining n ´ 1 dispatches between two branches, we cannot encode the fact
that extended type-cases might not cover 1. For instance, consider the following
expression:

λx. tcasex of IntÑ x` 1 | BoolÑ x

This type-case only covers Int _ Bool. If x has any other type, for instance
String, then the reduction is stuck as no branch can be selected. This is different
from the behavior of the expression λx. (xPInt) ?x ` 1 :x, where the type-case
reduces to a value for every x. For this reason, we first add a new construct pξ : τq
to our intermediate language that allows expressing a type constraint, for instance
“x must have type Int_Bool”. This new construct will allow us to encode extended
type-cases, by combining it with ternary type-cases and let-bindings.

7.4. Extended type-cases 161

Intermediate expr. ξ ::“ c | x | λx.ξ | ξξ | pξ, ξq | πiξ | (ξPτ) ? ξ : ξ
| let ξ in ξ | pξ : τq

Intuitively, this pξ : τq construct corresponds to a dynamic type cast: if the
expression ξ does not reduce to a value of type τ (and does not diverge), then the
reduction is stuck (though it is not necessary to give it a semantics as it only exists
in the intermediate language).

Type constraints should not be confused with user type annotations defined in
Section 7.2. Indeed, user type annotations are only inserted on the parameters of
λ-abstractions, and they fully determine the domain of the λ-abstraction. Instead,
type constraints can be inserted around any expression e, and they only check the
type of e: the expression ptrue : Boolq can still be typed True or 1, as long as the
type Bool is derivable for true.

Declarative type system The declarative type system is extended with this rule:

[Constr]
Γ $ ξ : τ Γ $ ξ : t

Γ $ pξ : τq : t

Note that the type derived for an expression pξ : τq is not necessarily τ : the rule
[Constr] only checks whether ξ has type τ , but then independently derives another
type for ξ.

Algorithmic type system A type constraint construct is added to atoms:

Atomic expr a ::“ c | x | λx.κ | px, xq | xx | πix | (xPτ) ? x : x
| let x in x | x : τ

The J.K transformation, for transforming expressions of the intermediate lan-
guage to canonical forms, is extended with this case:

Jξ : τK “ ppB; px˝, x : τqq, x˝q where pB, xq “ JξK and x˝ is a fresh binding variable

The algorithmic type system can then be extended with the following rule, with
:pΣq a new annotation dedicated to type constraints:

[Constr-Alg]
Γ $A rx : τ | :pΣqs : Γpxq

ΓpxqΣ ď τ

Main reconstruction system The main reconstruction system is extended with
this rule:

[ConstrVar]
x R dompΓq

Γ $R xx : τ | infery ñ Var px, infer, untypq

[ConstrInfer]
Ψ “ tally_inferpΓpxq 9ď τq

Γ $R xx : τ | infery ñ SubstpΨ, typ, untypq

162 Chapter 7. Extensions

These two rules are similar to the rules for projections: [ConstrVar] ensures that
the binding variable x is in the environment, while [ConstrInfer] uses tallying to
find some instances of the current context that make x have type τ .

Substitution inference system The substitution inference system is extended
with this rule:

[Constr]
σ P tallyptΓpxq 9ď τuq

Γ $S xx : τ | typy ñ :ptσuq

This rule uses tallying to find an instantiation σ such that Γpxqσ ď τ , and anno-
tates the atom with :ptσuq in order to satisfy the side-condition of the algorithmic
[Constr-Alg] rule. Note that, similarly to the rules for type-cases presented in
Section 6.3, we only need to keep one such σ: there is no need to return the whole
set of solutions Σ as our objective is only to satisfy the side-condition ΓpxqΣ ď τ ,
and not to find the smallest possible type for a destructor.

Split backpropagation system The split backpropagation system is extended
with this rule:

[Constr]
Γ $B px : τ : uq ñ ttx : uuu

For an atom x : τ to have type u, we just need x to have type u. Actually, x should
also have type τ (otherwise the atom would be untypeable), but there is no need to
check that in this rule as the $B system is only called on atoms that have already
been typed.

Encoding in the type system

Now that our intermediate language has let-bindings and type constraints, we can
encode extended type-cases of the source language into the intermediate language
by extending the L.M transformation (Definition 73) with the following case:

Ltcase e of τ1 Ñ e1 | . . . | τn Ñ enM

“ let pLeM :
Ž

iP1. .n τiq in cLeMpτ1 Ñ Le1M ; . . . ; τn Ñ LenMq

with cξpτ Ñ ξ1q “ ξ1

cξpτ Ñ ξ1 ; Cq “ (ξPτ) ? ξ1 : cξpCq

Basically, an extended type-case tcase e of τ1 Ñ e1 | . . . | τn Ñ en is encoded in
two steps. First, we ensure that the expression e reduces to a value v that is matched
by at least one pattern. This is done by the pLeM :

Ž

iP1. .n τiq expression. Second,
we select the first branch that applies using several consecutive regular type-cases:
this is done by the cLeMpτ1 Ñ Le1M ; . . . ; τn Ñ LenMq expression which transforms a
type-case with multiple branches into a sequence of ternary type-cases nested on
the right. If no pattern can capture v, then the last branch would be selected, but
this case cannot happen thanks to the first step.

7.5. Pattern matching 163

7.5 Pattern matching

Pattern matching is a fundamental feature of functional languages, and even some
dynamic languages such as Python have finally implemented it (Python documenta-
tion, 2021). In this section, we add this feature to our source language by encoding
it using let-bindings and extended type-cases.

Syntax and semantics

We first define patterns and some operations on them:

Definition 74 (Patterns). The set of patterns is the set of finite terms produced
by the following grammar:

Patterns p ::“ τ | x | p&p | p|p | pp, pq | x := c

Definition 75. Let p be a pattern, and v a value. The substitution generated by
the pattern p for the value v, noted v{p, is defined inductively as follows:

v{τ “ ∅ if v P τ

v{x “ tv{xu

v{pp1&p2q “ pv{p1q Y pv{p2q if v{p1 ‰ fail and v{p2 ‰ fail

v{pp1|p2q “ v{p1 if v{p1 ‰ fail

v{pp1|p2q “ v{p2 if v{p1 “ fail

pv1, v2q{pp1, p2q “ pv1{p1q Y pv2{p2q if v1{p1 ‰ fail and v2{p2 ‰ fail

v{px := cq “ tc{xu

v{p “ fail otherwise

where Y denotes the union of two substitutions with disjoint domains (if the two
substitutions have overlapping domains, then it yields fail).

The pattern τ only matches values of type τ and does not capture them. Con-
versely, the pattern x matches any value and captures it in the variable x.

The pattern p1&p2 matches any value v that is matched by p1 and p2, and
captures both values captured by p1 and by p2 in v (it requires the capture variables
in p1 and p2 to be disjoint).

The pattern p1|p2 matches any value v that is matched by p1 or p2, and captures
values captured by p1 in v if v is matched by p1, and values captured by p2 in v

otherwise. The set of capture variables in p1 is equal to the set of capture variables
in p2: expressions featuring a | pattern for which it is not the case will not be
typeable.

164 Chapter 7. Extensions

The pattern pp1, p2q matches any pair pv1, v2q, and captures values captured by
p1 in v1 and values captured by p2 in v2. Similarly to p1&p2 patterns, it requires the
capture variables in p1 and p2 to be disjoint.

Finally, the pattern x := c just assigns the constant c to the capture variable x.
It can be useful in the presence of a union of patterns: for instance, in the pattern
px,1q|px := nilq, the variable x captures the first component of the matched value
if this value is a pair, and otherwise it captures the constant nil.

The next operator we define, *p+, computes the type of values matched by a
pattern p. In other words, it returns a test type τ such that @v R τ. v{p “ fail (and
such that @v P τ. v{p ‰ fail, provided that the pattern p does not have conflicting
capture variables).

Definition 76. Let p be a pattern. The type captured by the pattern p, noted *p+,
is defined inductively on p as follows:

*τ+ “ τ

*x+ “ 1

*p1&p2+ “ *p1 +^ * p2+

*p1|p2+ “ *p1 +_ * p2+

*pp1, p2q+ “ *p1 +ˆ * p2+

*x := c+ “ 1

With these operators defined, it is now straightforward to add pattern-matching
to our language and define its semantics. This is formalized in Figure 7.4.

This definition of pattern-matching is borrowed from Frisch (2004), with some
additional restrictions: piq the same restriction applies on test types τ as for type-
cases (the only arrow type allowed is 0 Ñ 1), and piiq we do not support recursive
patterns2.

Encoding in the type system

In terms of typing, we do not need to extend the type system: we can encode pattern-
matching using let-bindings and extended type-cases. The idea is to transform each
branch of the pattern-matching into a branch of an extended type-case, where every
capture variable in the associated pattern is extracted and introduced using let-
bindings.

First, we need a way to extract the value captured by a variable in a pattern:

2In Frisch (2004), patterns are extended with a recursive construct. For instance, the pattern
p “ px&Int, pq|p1, pq|px := nilq captures in any list, encoded as nested pairs terminating with a
nil value, the sublist of its integer elements.

7.5. Pattern matching 165

Syntax

Expression e ::“ c | x | λx.e | e e | pe, eq | πie | (ePτ) ? e : e | letx = e in e
| ptcase e of τ Ñ e | . . . | τ Ñ eq

| pmatch e with pÑ e | . . . | pÑ eq

Value v ::“ c | λx.e | pv, vq

Additional reduction rules

For every n P N˚ and k P 1 . . n:

match v with p1 Ñ e1 | . . . | pn Ñ en ⇝ ekpv{pkq
if v P *pk + zp

Ž

iP1. .k´1 *pi+q
and v{pk “ fail

Evaluation Context

E ::“ r s | v E | E e | pv,Eq | pE, eq | πiE | (EPτ) ? e : e | letx =E in e

| ptcaseE of τ Ñ e | . . . | τ Ñ eq

| pmatchE with pÑ e | . . . | pÑ eq

Figure 7.4: Syntax and semantics of the language with pattern-matching

Definition 77. For a pattern p, an expression e and a variable x, we define the
expression dxpp, eq inductively on p as follows:

dxpx, eq “ e

dxpx := c, eq “ c

dxppp1, p2q, eq “ dxpp1, π1eq if x P varspp1q, x R varspp2q

dxppp1, p2q, eq “ dxpp2, π2eq if x P varspp2q, x R varspp1q

dxpp1&p2, eq “ dxpp1, eq if x P varspp1q, x R varspp2q

dxpp1&p2, eq “ dxpp2, eq if x P varspp2q, x R varspp1q

dxpp1|p2, eq “ (eP * p1 +) ? dxpp1, eq : dxpp2, eq

dxpp, eq “ undefined otherwise

Intuitively, the operator dxpp, eq returns an expression that extracts from the
expression e the value captured by x in the pattern p. For instance, dx1ppx1, x2q, eq

returns π1e.
Now, we extend the transformation L.M to encode pattern-matching of the source

language into the intermediate language. This yields the following case:

Lmatch e with p1 Ñ e1 | . . . | pn Ñ enM

“ Lletx = e in tcasex of * p1+ Ñ e11 | . . . | * pn+Ñ e1n M

166 Chapter 7. Extensions

where x is a fresh variable, and where for every i P 1 . . m,

e1i “
def letx1 = dx1ppi, xq in . . . letxm = dxmppi, xq in ei

with x1, ..., xm the variables appearing in pi.
Note that, in this definition, L.M is called recursively on an expression of the

source language that is not a strict subexpression of the initial expression. Still,
it is a well-founded inductive definition: each recursive call in the definition of L.M
is either on a strict subexpression, or it makes the number of pattern-matching
expressions to decrease.

When this transformation L.M is undefined, then we consider that the source
expression is untypeable. This can happen, for instance, if the source expression
contains an invalid pattern such as x&x (or more generally, a pattern p such that
@v. v{p “ fail).

Chapter 8

Practical Aspects

Contents
8.1 Intersection nodes pruning . 168

8.1.1 An explosion of the number of branches 168
8.1.2 A heuristic for trimming redundant branches 171

8.2 Type decompositions pruning 176
8.3 Simplification of types . 178

8.3.1 Simplification of function types 179
8.3.2 Simplification of tallying solutions 180

8.4 Memoization . 183

In Chapters 5 and 6 respectively, we have formalized an algorithmic type sys-
tem and an algorithm to reconstruct annotation trees. Combined, they allow us
to infer the type of expressions of the source language. However, though the re-
construction algorithm is terminating, a naive implementation would be unpractical
due to performance issues. We present now several high-level optimizations that we
implemented to mitigate the high branching factor of our backtracking algorithm.

A first source of inefficiency comes from the generation of intersection nodes
when a destructor is reconstructed. This can lead to an explosion of the number
of branches to explore, even though many of them may be redundant. This can be
mitigated by trimming branches when we estimate that they will not contribute to
make the final type strictly smaller. This optimization is explored in Section 8.1.

Another source of inefficiency comes from the type decomposition performed
after each binding. Although these type decompositions are usually small (e.g., the
type of a binding is seldom split in more than two parts), it becomes an issue when
typing large expressions with multiple type-cases, since all the decompositions of
successive bindings compose one with another, yielding an exponential explosion of
the number of cases to explore. This is addressed in Section 8.2.

A third difficulty comes from the complexity of the operations on set-theoretic
types (subtyping, tallying, etc.). The types manipulated during the reconstruction
may get more and more complex, making these type operations slower. Performing
simplifications of types and tallying solutions can thus have a significant positive
impact on performance. This is discussed in Section 8.3.

Finally, in Section 8.4, we discuss the use of memoization techniques in order to
prevent the reconstruction algorithm from retyping the same subexpression multiple
times under equivalent contexts.

168 Chapter 8. Practical Aspects

Note that the implementation of set-theoretic types and the associated type op-
erators (subtyping, DNF, tallying, etc.) are not discussed here. Efficient algorithms
for these operators are described in Castagna et al. (2015) and Castagna (2020).
An efficient implementation of these operators in OCaml can also be found in the
polymorphic version of CDuce.

8.1 Intersection nodes pruning

8.1.1 An explosion of the number of branches

While the reconstruction algorithm presented in Chapter 6 is guaranteed to termi-
nate, the number of explored branches can explode if we implement it naively.

Consider the following example, written in an OCaml-like syntax where type-
cases are noted if e is t then e1 else e2 (this is the syntax used by our prototype
implementation, which will be presented in Chapter 9):

let typeof arg =

if arg is Int then "number"

else if arg is Bool then "boolean"

else if arg is Unit then "unit"

else if arg is String then "string"

else "object"

This function typeof is inspired by JavaScript’s typeof operator. The expected
type for this function is:

pIntÑ "number"q ^ pBoolÑ "boolean"q ^ pUnitÑ "unit"q^

pStringÑ "string"q ^ p1zpInt_ Bool_ Unit_ Stringq Ñ "object"q

The corresponding MSC form is the following (instead of defining a binding for
each string constant, they have been inlined for concision):

λx.

bind x = x in

bind x1 = (xPString) ? "string" : "object" in

bind x2 = (xPUnit) ? "unit" : x1 in

bind x3 = (xPBool) ? "boolean" : x2 in

bind x4 = (xPInt) ? "number" : x3 in

x4

During the reconstruction, x is initially given the type α. The first binding
definition to be explored is the definition of x4, triggering the reconstruction of x
(Rule [CaseVar]), which is typed α, and then decomposing this type into two
parts, namely Int and ␣Int (Rule [CaseSplit]). While exploring the Int part,
the [CaseThen] rule is applied on the definition of x4, yielding a Subst result that
generates two branches (regrouped by an intersection annotation at the root of the
annotation tree):

8.1. Intersection nodes pruning 169

1. One issued from the substitution tα⇝ αzIntu and for which, when exploring
the Int part for x, the type-case is typed using the rule [0-Alg].

2. The other issued from the identity substitution ∅ (the default case) and for
which, when exploring the Int part for x, the type-case is typed using the rule
[P1-Alg].

In both branches, the exploration of the part ␣Int for x yields two branches again,
this time when applying the rule [CaseElse] on the definition of x4:

1. One issued from the substitution tα⇝ α^Intu and for which, when exploring
the ␣Int part for x, the type-case is typed using the rule [0-Alg].

2. The other issued from the identity substitution ∅ (the default case) and for
which, when exploring the ␣Int part for x, the type-case is typed using the
rule [P2-Alg].

We end up with 4 branches:

1. One where x has type 0 and where the type-case is typed with [0-Alg] for
both parts Int and ␣Int.

2. One where x has type αzInt and where the type-case is typed with [0-Alg]
for the part Int and with [P2-Alg] for the part ␣Int.

3. One where x has type α^Int and where the type-case is typed with [P1-Alg]
for the part Int and with [0-Alg] for the part ␣Int.

4. One where x has type α and where the type-case is typed with [P1-Alg] for
the part Int and with [P2-Alg] for the part ␣Int.

While the exploration of the branches 1 and 3 does not yield any new branch,
branches 2 and 4 require typing x3 and thus exploring them will again generate four
branches each. This process continues with x2 and x1. We can see with this example
that the number of cases to explore grows exponentially. The tree below illustrates
this explosion: each node corresponds to an intersection node in the derivation tree,
and is labeled with the domain of typeof that it captures at the moment it is
generated.

α

αzInt

0 αzInt

αzIntzBool

0 αzIntzBool

...
...

αzInt

α^ Bool αzInt

...
...

α

α^ Int α

αzBool

0 αzBool

...
...

α

α^ Bool α

...
...

170 Chapter 8. Practical Aspects

This explosion of the number of branches is problematic. Though, many of these
branches are redundant: our objective is thus to eliminate them. In particular,
among the nodes at depth 2 in the tree above (0, αzInt, α ^ Int, α), it is only
necessary to explore αzInt and α ^ Int: the branch with the domain 0 can only
yield for this function the type 0 Ñ 1 (the supertype of all functions), and the
domain α is already covered by the union of the two more specific branches αzInt

and α^ Int (i.e., we have α ď pα^ Intq _ pαzIntq).
The generation of redundant branches can also originate from applications.

For instance, consider the canonical form λx. bind x =x in f x with f : pInt Ñ

Intq ^ pBool Ñ Boolq. When calling the reconstruction on the application f x,
with x initially typed α, the [AppInfer] rule generates three substitutions, each
corresponding to a solution to the associated tallying instance:

1. tα⇝ α^ pBool_ Intqu: in this case, the result is of type Int_ Bool,

2. tα⇝ α^ Intu: in this case, the result is of type Int,

3. tα⇝ α^ Boolu: in this case, the result is of type Bool.

Each substitution is then applied to the environment and explored in a separate
branch. The first branch yields the type Bool _ Int Ñ Bool _ Int for our λ-
abstraction, while the two others yield the types Int Ñ Int and Bool Ñ Bool

respectively. The first branch is thus redundant as pIntÑ Intq ^ pBoolÑ Boolq ď

Bool _ Int Ñ Bool _ Int. We will see in the next section how we can detect and
trim those redundant branches.

Unfortunately, sometimes the combinatorics explosion cannot be avoided. For
instance, consider this slightly modified version of the typeof example, where x is
a variable of type 1 already in the context:

let typeof_image f =

if f x is Int then "number"

else if f x is Bool then "boolean"

else if f x is Unit then "unit"

else if f x is String then "string"

else "object"

This time, the same explosion happens (the reasoning is similar) but the domains
explored by the branches are different:

1 Ñ α

1 Ñ αzInt

1 Ñ 0 1 Ñ αzInt

...
...

1 Ñ α

1 Ñ α^ Int 1 Ñ α

...
...

8.1. Intersection nodes pruning 171

Here, none of the nodes at depth 2 is redundant. In particular, the domain
1 Ñ α is not covered by the union of the two domains 1 Ñ αzInt and 1 Ñ α^Int:
the type p1 Ñ α^ Intq _ p1 Ñ αzIntq is strictly smaller than 1 Ñ α (it becomes
clear when substituting α by 1: the type p1 Ñ Intq_ p1 Ñ ␣Intq does not contain
functions that return integers for some inputs and Boolean values for some others
inputs, whereas the type 1 Ñ 1 does).

8.1.2 A heuristic for trimming redundant branches

We see in this section a heuristic to trim branches that do not contribute to obtain a
smaller type. It consists in three steps: piq we explore “more specific” branches first,
piiq we remember, for each branch, the domain it covers for each λ-abstraction, and
piiiq before exploring a branch, we check if this branch explores a domain that has
not been covered yet (if not, it will be trimmed).

8.1.2.1 Order of exploration

Let us consider a simplified version of the typeof example above:

let typeof_simplified arg =

if arg is Int then "number"

else "other"

When reconstructing the annotation tree of typeof_simplified, we get the fol-
lowing branches (again, each node represents an intersection node and is labeled by
the domain it captures at the moment of its generation):

α

αzInt

0

0 Ñ 0

αzInt

αzIntÑ "other"

α

α^ Int

α^ IntÑ "number"

α

αÑ "number"_ "other"

The type under the dashed arrow is the type we obtain for each branch (note
that we only know this type after having finished the reconstruction for the branch).
The situation is similar to the one of the typeof example in the previous section:
the rightmost branch does not contribute to the final type, as the intersection of the
other branches yields a smaller type: we have pα^ Int Ñ "number"q ^ pαzInt Ñ
"other"q ď α Ñ "number"_ "other". However, when this branch is generated, we
do not know yet the type it will yield.

Still, we know that it will yield a less precise type that its neighbor branch
α ^ Int for the atom from which their parent intersection node originates, that
is, the atom corresponding to the type-case if arg is Int then "number" else

172 Chapter 8. Practical Aspects

"other". Indeed, the α branch requires to type both branches of the type-case,
while the α^ Int branch allows skipping the second one. Consequently, we choose
to first explore the more specific α^ Int branch, and only then, if we estimate that
the branches already explored do not cover all the possible domains, we will explore
the α branch.

We apply the same idea to the intersection node at the root. In the end, the
leaves are explored in the following order: 0, then αzInt, then α^ Int, and finally
α. Here, every intersection node originates from a type-case, but the same idea can
be applied for intersection nodes coming from an application: among the solutions
to the tallying instance, if we know that one of them yields a smaller type than
another one for the application at issue, then the corresponding branch is explored
first.

Formally, we change the intermediate annotations for intersections, so that sets
are replaced by ordered lists:

Atom intermediate annot. A ::“ . . . |
Ź

ppA ; . . . ; Aq, pA ; . . . ; Aqq
Form intermediate annot. K ::“ . . . |

Ź

ppK ; . . . ; Kq, pK ; . . . ; Kqq

We update the reconstruction rules for intersections accordingly, so that branches
are explored following the order of the list. The [Iterate2] rule, that generates
intersection nodes, is updated accordingly:

Result R ::“ . . . | Substppψ ; . . . ; ψq,H,Hq

[Iterate2]

Γ $R xη | Hy ñ Substppψ1 ; . . . ; ψnq,H1,H2q

Γ $˚
R xη |

Ź

ppH1ψ1 ; ... ; H1ψn ; H2q, εqy ñ R

Γ $˚
R xη | Hy ñ R

@i P 1 . . n. ψi#Γ

Note that the default case H2 is inserted at the last position in the intersection.
Finally, we update the rules that generate a Subst result so that they give

a suitable order to the substitutions: when a rule [ProjInfer] or [AppInfer]
generates a Substppψ1 ; . . . ; ψnq,H1,H2q result, the substitutions ψi should be
ordered by increasing estimated result type for the Ÿ order (if the current atom is
expected to have a smaller type under the environment Γψi compared to Γψj , then
ψi should precede ψj). We formalize it for the rule [AppInfer] below (other rules
such as [ProjInfer] are similar):

[AppInfer]
tψiuiP1. .n “ tally_inferpΓpx1q 9ď Γpx2q Ñ αq

Γ $R xx1x2 | infery ñ Substppψ1
1 ; . . . ; ψ1

nq, typ, untypq
α P VM fresh

with @i P 1 . . n, ψ1i “
def ψi

ˇ

ˇ

VM ztαu
, and such that:

@i P 1 . . n. @j P i` 1 . . n. genpαψiq ŸT αψj or genpαψjq ŽT αψi

where genptq renames all monomorphic type variables in t with fresh polymorphic
ones, and where ŸT is defined as follows:

8.1. Intersection nodes pruning 173

Definition 78. We define the binary relation ŸT as follows:

t1 ŸT t2 ðñ
def

Dσ. t1σ ď t2

This relation ŸT (where the subscript T stands for “Tallying”) intuitively corre-
sponds to an approximation of the relation Ÿ that can be decided using the following
tallying instance:

t1 ŸT t2 ðñ tallyptt1 9ď monopt2quq ‰ ∅

where monoptq renames all polymorphic type variables in t with fresh monomorphic
ones.

8.1.2.2 Trimming redundant branches

Now that we have determined an order of exploration for branches of intersection
nodes, we have to decide when a pending branch should be trimmed. We do that
by estimating whether it allows exploring new domains or not. To be able to do
such an estimation, whenever a Substppψ1 ; . . . ; ψnq,H1,H2q result is generated,
it is decorated with the domains of the λ-abstractions it crosses while backtracking,
and this information is then stored into the generated intersection node.

Intuitively, we want to label branches of intersection nodes similarly as the nodes
of the trees we have drawn in the previous section, but in a more general setting
where there might be several λ-abstractions. For instance, here is the intersection
tree that we want to build for typeof_simplified:

targ : α1zIntu

targ : 0u targ : α3zIntu

targ : α2u

targ : α4 ^ Intu targ : α5u

To achieve this, an extra parameter Γ is added to Subst results:

Result R ::“ . . . | Substppψ ; . . . ; ψq,Γ,H,Hq

When a Subst result is generated, this parameter is initially set to ∅:

[AppInfer]
tψiuiP1. .n “ tally_inferpΓpx1q 9ď Γpx2q Ñ αq

Γ $R xx1x2 | infery ñ Substppψ1
1 ; . . . ; ψ1

nq,∅, typ, untypq
α P VM

Then, this parameter is populated when leaving a λ-abstraction while backtrack-
ing:

[LambdaSubst]
Γ, x : u $˚

R xκ | Ky ñ SubstpL,Γ1,K1,K2q

Γ $R xλx.κ | λpu,Kqy ñ SubstpL, pΓ1, x : uq, λpu,K1q, λpu,K2qq

174 Chapter 8. Practical Aspects

Finally, when an intersection is created from this Subst result by a [Iterate2]
rule, each branch H1ψi is decorated with the associated environment Γ1ψi, and the
default branch H2 is decorated with Γ1:

Decorated atom annot. A˝ ::“ pA,Γq
Atom annotations A ::“ . . . |

Ź

ppA˝ ; . . . ; A˝q, pA˝ ; . . . ; A˝qq
Decorated form annot. K˝ ::“ pK,Γq
Form annotations K ::“ . . . |

Ź

ppK˝ ; . . . ; K˝q, pK˝ ; . . . ; K˝qq

[Iterate2]

Γ $R xη | Hy ñ Substppψ1 ; . . . ; ψnq,Γ
1,H1,H2q

@i P 1 . . n. H˝
i “ pH1ψi, genΓpΓ

1ψiqq

Γ $˚
R xη |

Ź

ppH˝
1 ; . . . ; H˝

n ; pH2, genΓpΓ1qqq, εqy ñ R

Γ $˚
R xη | Hy ñ R

@i P 1 . . n. ψi#Γ

where genΓpΓ1q is obtained by substituting in Γ1 all monomorphic type variables in
varspΓ1qzvarspΓq by fresh polymorphic ones.

Now that branches of intersection nodes are labelled with an environment rep-
resenting the domains they cover, we remember the labels corresponding to the
branches that we have already explored while walking through the annotation tree.
More precisely, we parametrize our reconstruction algorithm by a set of environ-
ments

L
. When reconstructing an intersection node, we reconstruct its first branch,

add its label to
L
, then reconstruct the next branch, and so on. For instance, for

the intersection tree of typeof_simplified, before exploring the rightmost leaf, we
should have collected the following set of environments

L
:

L
“ t targ : α1zIntu , targ : α4 ^ Intu u

The first environment comes from the label of the left branch of the intersection
node at the root (this left branch should have been fully explored before the right
one according to the previous section), and the second environment comes from the
label of the left branch of the targ : α2u intersection node.

Before exploring a branch of an intersection node, the set of environments
L

is compared, using several tallying instances, with the label Γ of this branch. We
proceed in two steps: piq

L
is filtered in order to only keep environments that are

“more specific” than Γ, then piiq we determine whether the “union” of the remaining
environments in

L
covers Γ.

The purpose of the first step is to consider, among the branches that have already
been explored, only those that have been generated from a type-case or application
in the same λ-abstraction as the pending branch, and for which the body of this
λ-abstraction is typed with a smaller type than it will (probably) be in the pending
branch. Indeed, if the label Γ1 of a previously-explored branch is smaller than the
label Γ of the pending branch, it means that the body of the λ-abstraction that
triggered these branches has been typed under a smaller context and, thus, that it
should yield a smaller type. In other words, we want to select, among the explored
branches, those that were generated in the same λ-abstraction as the pending branch

8.1. Intersection nodes pruning 175

and that type the body of this λ-abstraction more precisely. This filtering is achieved
as follows:

1.
L

is first filtered by removing any Γ1 P
L

such that dompΓ1q ‰ dompΓq. This has
as effect to filter out every previously-explored branch that does not originate
from the same λ-abstraction as the pending branch.

2. Then, for each remaining Γ1 P
L
, we generate the following tallying instance:

tallyptΓ1pxq 9ď Γpxq | x P dompΓquq

If there is at least one solution, then Γ1 is kept, otherwise it is filtered away.

We note filterpΓ,
L
q the result of this filtering. In our typeof_simplified example,

with
L
“ t targ : α1zIntu , targ : α4 ^ Intu u and Γ “ targ : α5u, no branch is

filtered out (we have filterpΓ,
L
q “

L
).

For the second step, which consists in determining whether the environments in
this filtered

L
cover the environment Γ of the pending branch, we first define a rep-

resentation of an environment as a type. Let encodingpΓq be the type representation
of Γ, defined as the following record type:

encodingpΓq “def {{{labelpxq = Γpxq |x P dompΓq}}}

with labelpxq an arbitrary fresh label associated to the variable x. Note that, as
all our environments have the same fixed domain, we could also define encodingpΓq
using a product type by fixing an arbitrary order over the variables in dompΓq.

Now, the idea that “the environment Γ can be covered with the set of environ-
ments

L
” can be encoded with the following formula:

¨

˝

ł

Γ1PfilterpΓ,
L
q

encodingpΓ1q

˛

‚ŹT encodingpΓq

where ŹT is a binary relation over types defined as follows:

Definition 79. We define the binary relation ŹT as follows:

t1 ŹT t2 ðñ
def

Dσ. t1σ ě t2

Intuitively, the relation t1 ŹT t2 means that t1 has a better coverage than t2.
Note that t1 ŹT t2 is not equivalent to t2 ŸT t1 (cf. Definition 78): the first tries to
instantiate t1, while the second tries to instantiate t2. The relation t1 ŹT t2 can be
decided using the following tallying instance:

t1 ŹT t2 ðñ tallyptmonopt2q 9ď t1uq ‰ ∅

where monoptq renames all polymorphic type variables in t with fresh monomorphic
ones.

176 Chapter 8. Practical Aspects

If
Ž

Γ1PfilterpΓ,
L
q encodingpΓ1q ŹT encodingpΓq holds, meaning that the domains

of the next branch to explore are already covered by the domains of the branches
already explored, then we can trim this branch. In our typeof_simplified example,
the branch labeled with Γ “ targ : α5u is trimmed as we have {{{arg = α1zInt}}} _

{{{arg = α4 ^ Int}}}ŹT {{{arg = α5}}}.
This yields the following rule, to be added to the reconstruction system with

higher priority over other rules for intersections:

[InterTrim]

Ž

Γ1PfilterpΓ1,
L
q encodingpΓ1q ŹT encodingpΓ1q

Γ $R xη |
Ź

ppH˝2 ; . . . ; H˝nq, Lqy ñ R

Γ $R xη |
Ź

pppH1,Γ1q ; . . . ; H˝nq, Lqy ñ R

where
L

is the set of labels of the branches already explored.
Note that intersection nodes that are created after a user type annotation should

not be pruned: in this way, the user can force the exploration of a branch, giving
them more control.

8.2 Type decompositions pruning

In addition to intersection nodes, branching can also come from type decompo-
sitions made after each binding. Let us consider the following expression, with
not : pTrueÑ Falseq ^ pFalseÑ Trueq and arg : Bool:

if not arg is True then arg else false

The associated MSC form is the following (the binding for the constant false

has been inlined for concision):

bind x1 = not in

bind x2 = arg in

bind x3 = x1 x2 in

bind x4 = (x3PTrue) ? x2 : false in

x4

When reconstructing the definition of x4, a type decomposition is generated for
x3. This is illustrated by the following tree, where each node represents a binding
and the type of the associated definition, and each edge represents a part of the
type decomposition performed for this binding:

x1 : pTrueÑ Falseq ^ pFalseÑ Trueq

x2 : Bool

x3 : Bool

.

1

1

True ␣True

8.2. Type decompositions pruning 177

Then, the type decomposition performed on x3 is propagated to x2:

x1 : pTrueÑ Falseq ^ pFalseÑ Trueq

x2 : Bool

x3 : True

x4 : False

False

x4 : 0

0

x3 : False

x4 : 0

0

x4 : False

False

1

␣True

True

1

␣True

1

True

True

1

␣True

1

As we can see, some of these branches are useless: for instance, in the case where
x3 : True, the ␣True part of the type decomposition of x3 is useless, as the other
part True is enough to cover the whole type of x3. If we want to avoid exploring such
useless parts, we need to allow the type decompositions to cover only the type of the
associated definition, instead of always covering 1. In this section, we propose some
changes in this direction for the algorithmic type system and for the reconstruction
algorithm.

The binding annotation keep pa, tpu,kq, . . . , pu,kquq is modified to take a set of
substitutions Σ as extra parameter:

Form annotations k ::“ . . . | keep pa, tpu,kq, . . . , pu,kqu,Σq | . . .

Then, the [Bind2-Alg] rule of the algorithmic type system can be modified as
follows:

[Bind2-Alg]

Γ $A ra | as : s

p@i P Iq Γ, x : s^ ui $A rκ | kis : ti

Γ $A rbind x = a inκ | keep pa, tpui,kiquiPI ,Σqs :
Ž

iPI ti

I ‰ ∅
sΣ ď

Ž

iPI ui

The guard condition tuiuiPI P Partp1q of the original [Bind2-Alg] rule has been
replaced by sΣ ď

Ž

iPI ui: instead of requiring the type decomposition to cover
1, we only need it to cover (any instantiation of) the type of the definition. Note
that this instantiation Σ is only used to justify that the type decomposition covers
the type of the definition: it is not applied to the type s of the definition when
recursively typing the body, in order not to pollute the type of x with instantiations
that might be useless. The admissibility of this new [Bind2-Alg] rule follows from
the monotonicity of the algorithmic type system (Lemma 34).

Now we can change the reconstruction so that parts of type decompositions that
are disjoint from (an instance of) the type of the definition are not explored. We
change the intermediate annotations for bindings as follows:

Form intermediate annot. K ::“ . . . | keep pA,S,S,uq
| propagate pA,

L
,S,S,uq

178 Chapter 8. Practical Aspects

with u a set of monomorphic types representing the parts of the decomposition
that will not be explored because they are not necessary to cover the type of the
definition.

The keep and propagate annotations are given this additional parameter u to
keep track of the parts of the decomposition that do not need to be explored.

The rule [BindKeep] of the substitution inference system, for transforming in-
termediate annotations into annotations for the algorithmic type system, is modified
accordingly:

[BindKeep]

Γ $S xa | Ay ñ a Γ $A ra | as : s

p@i P Iq Γ, x : s^ ui $S xκ | Kiy ñ ki

p@j P Jq σj P tallypts 9ď ␣u1juq

Γ $S xbind x = a inκ | keep pA,∅, tpui,KiquiPI , tu1jujPJqy ñ k
p‹q

where k “ keep pa, tpui,kiquiPI , tσjujPJq, and p‹q is p
Ž

iPI uiq _ p
Ž

jPJ u1jq » 1.
In short, the set u of unexplored parts is used by the rule [BindKeep] to produce
by tallying the set of substitutions Σ “ tσjujPJ required by the algorithmic type
system to check that the type decomposition covers the type of the definition.

Now, we can amend the main reconstruction system in order not to explore
useless type decomposition parts. First, we add a rule that trims a decomposition
part if it is disjoint from the type of the definition:

[BindEmpty]
Γ $R xbind x = a inκ | keep pA, tp0, inferqu,∅,uqy ñ R

Γ $R xbind x = a inκ | keep pA,∅,∅,uqy ñ R

[BindTrim]

Γ $S xa | Ay ñ a Γ $A ra | as : s

Γ $R xbind x = a inκ | keep pA,S,S 1, tuu Y uqy ñ R

Γ $R xbind x = a inκ | keep pA, tpu,Kqu Y S,S 1,uqy ñ R
u fi 0
s^ u » 0

The rule [BindEmpty] ensures that, even when the type of the definition is 0, we
explore the body of the canonical form at least once. Note that the side condition
s^ u » 0 may be replaced by a tallying instance s^ uŸT 0 (cf. Definition 78) to
trim more branches.

The [BindKeep] and [BindProp] rules are mostly unchanged (we just add the
additional parameter u to the keep and propagate annotations).

8.3 Simplification of types

Through the process of reconstruction, the types inferred for the parameters of λ-
abstractions might get more and more complex as they are successively substituted.
In particular, the number of distinct type variables appearing in those types can
grow exponentially if we are not careful about it. It is important to keep types as
simple as possible and to minimize the number of type variables: in addition to
significantly improving performance of subtyping and tallying, doing so will result
in the inference of types more readable for the user.

8.3. Simplification of types 179

8.3.1 Simplification of function types

We focus here on the simplification of the arrow part of types. Function types are
subtle to manipulate as they mix covariance and contravariance. Two equivalent
function types may have very different representations of different complexity, and
the simplification of the DNF of a function type is a hard problem. Still, even
though we have no systematic method of simplifying a function type, applying some
simple simplification rules can greatly reduce the size of the representation of many
function types generated during the reconstruction.

8.3.1.1 Simplification during the reconstruction

We recall that the DNF of a function type is as follows (see Section 2.5):

t »dnf
ł

iPI

¨

˝

ľ

p1PP 1
i

αp1 ^
ľ

n1PN 1
i

␣α1n1 ^
ľ

pPPi

psp Ñ tpq ^
ľ

nPNi

␣ps1n Ñ t1nq

˛

‚

where α can denote either a polymorphic or monomorphic type variable, and where
for each i P I, the whole summand is not equivalent to 0.

A first simplification consists in removing useless summands: if, for some j P
I,

Ž

iPIztju

´

Ź

p1PP 1
i
αp1 ^

Ź

n1PN 1
i
␣α1n1 ^

Ź

pPPi
psp Ñ tpq ^

Ź

nPNi
␣ps1n Ñ t1nq

¯

ě t,
then the summand associated to j can be removed from the DNF of t.

Similarly, we can remove useless literals: if, for some j P I and q P Pj ,
Ž

iPI

´

Ź

p1PP 1
i
αp1 ^

Ź

n1PN 1
i
␣α1n1 ^

Ź

pPP 2
i
psp Ñ tpq ^

Ź

nPNi
␣ps1n Ñ t1nq

¯

ď t with
P 2j “ Pjztqu and @i P Iztju. P 2i “ Pi, then the literal sq Ñ tq can be removed from
the DNF of t. The same applies to negative literals.

Another way to reduce the number of literals is to merge two literals together: if,
for some i P I, there are two p, q P Pi such that sp » sq, then the conjunction of the
two literals sp Ñ tp and sq Ñ tq can be transformed into a single literal sp Ñ tp^ tq.
Similarly, if tp » tq, then psp Ñ tpq ^ psq Ñ tqq can be merged into sp _ sq Ñ tp.
Note that this does not apply to disjunctions: psÑ t1q _ psÑ t2q is not equivalent
to sÑ t1 _ t2 in general, nor is ps1 Ñ tq _ ps2 Ñ tq equivalent to s1 ^ s2 Ñ t. This
does not apply to negative literals either.

In addition to performing these simplifications on the DNF of t, we can also per-
form it recursively on all the types sp, tp, s1n, and t1n. However, as types are defined
coinductively (they can be infinite trees), their memory representation may have
cycles. Thus, it is necessary to remember nodes that have already been explored.

These simplifications preserve the semantic equivalence », and can thus be per-
formed at any time during the reconstruction.

8.3.1.2 Simplification at top-level

Some additional simplifications can be performed at top-level, after the type of a
top-level definition has been generalized.

180 Chapter 8. Practical Aspects

A first straightforward simplification consists in substituting polymorphic type
variables that only appear in covariant positions by 0, and those that only appear in
contravariant positions by 1. For instance, for the type Int^αÑ Bool_β, we apply
the substitution tα⇝ 1 ; β ⇝ 0u, yielding the simpler type IntÑ Bool. Note that
this transformation does not preserve semantic equivalence, but the resulting type
is an instance of the initial type, and is smaller than the initial type.

It is also worth noting that the transformation above is more effective when the
type variables of the initial type are not unnecessarily correlated. For instance, the
type pInt ^ α Ñ Int ^ αq ^ p␣Int ^ α Ñ Falseq has its two branches using the
same type variable α. An alternative version of this type without this unnecessary
correlation would be pInt^αÑ Int^αq^p␣Int^β Ñ Falseq (this alternative type
can be obtained by expansion of the initial type and by subsumption). This allows
applying the simplification we have seen on β: as β only appears in a contravariant
position, it can be substituted by 1, yielding the type pInt^αÑ Int^αq^p␣IntÑ

Falseq. Thus, it is generally worth decorrelating the different branches of top-level
types, even though this might increase the number of different type variables.

Lastly, we can try to remove redundant literals of top-level types, just as we did in
the previous section, but this time by reasoning modulo instantiation. For instance,
the polymorphic type pα Ñ αq ^ pInt Ñ Intq should intuitively be simplified into
pαÑ αq (as the branch IntÑ Int is just an instance of the branch pαÑ αq). More
generally, let us assume that our top-level type has the following DNF:

t »dnf
ł

iPI

˜

ľ

pPPi

psp Ñ tpq

¸

Note that this DNF does not contain top-level type variables nor negative arrow
literals: this is always the case for the type inferred for a λ-abstraction. We assume
that the sets of polymorphic type variables of each summand are disjoint (if it is
not the case, we can temporarily substitute conflicting ones by monomorphic type
variables). Then, for every i P I and q P Pi, the literal sq Ñ tq can be removed if
´

Ź

pPPiztqu
psp Ñ tpq

¯

ŸT sq Ñ tq (that is, if there exists an instance of the other
literals that is smaller than sq Ñ tq).

The simplification above does not preserve the semantic equivalence »: in fact,
even for the same initial type t, it may yield different non-equivalent types depend-
ing on which order the literals of t are tested. Thus, it should not be performed
during the reconstruction of a definition, but only on top-level types because the re-
construction algorithm expects the algorithmic type system to be stable by semantic
type equivalence.

8.3.2 Simplification of tallying solutions

Many tallying instances are generated through the reconstruction process. In the
main reconstruction algorithm, tally_inferp.q is used to find substitutions involving
the monomorphic type variables in order to infer the types of the parameters of

8.3. Simplification of types 181

λ-abstractions. In the substitution inference system, tallyp.q is used to instantiate
polymorphic types for applications and projections.

The solutions to a tallying instance are not uniquely characterized: they can be
captured by different sets of substitutions. We consider the tallyp.q and tally_inferp.q
functions to be black boxes that can return any such set of substitutions. Still, for
better performance, it is important to simplify these solutions in order to keep types
as simple as possible and to minimize backtracking. We give in this section some
guidelines following this direction.

We start with some possible simplifications for the solutions to tallying instances
tallyp.q used in the substitution inference system:

Removing useless substitutions When calling tallyp.q to find instantiations for
an application involving polymorphic types, some substitutions found may be
useless. For instance, consider the application f x with f of type pα Ñ Boolq Ñ

α Ñ Bool and x the identity function of type β Ñ β. The tallying instance
generated for this application is the following:

tallyptpαÑ Boolq Ñ αÑ Bool 9ď pβ Ñ βq Ñ γuq

The solutions can be captured by these two substitutions tσ1, σ2u:

σ1 “ tα⇝ Bool^ β ^ α ; β ⇝ Bool^ β ; γ ⇝ pBool^ β ^ αÑ Boolq _ γu

σ2 “ tα⇝ 0 ; γ ⇝ 0 Ñ 1u

However, the substitution σ2 is not really interesting in our case, as our objective
is to get the smallest type for the result of the application (captured by the
type variable γ). Indeed, applying the substitution σ2 to f and x yields for the
application the type 0 Ñ 1, which is larger than the type we would obtain
with σ1. Thus, we should ignore the substitution σ2 and only instantiate f and x
with σ1 in order to keep types as simple as possible.

Minimizing the number of type variables In the previous example, the substi-
tution σ1 can be greatly simplified. Indeed, as our objective is to get the smallest
possible type for the result of the application (captured by γ in our example),
we can substitute the type variables that only appear in the result (captured by
the type variable γ) in a covariant position by 0, and substitute those that only
appear in a contravariant position by 1. Doing so on σ1 yields a new substitution
tα⇝ Bool ; β ⇝ Bool ; γ ⇝ BoolÑ Boolu.

We continue with some guidelines for simplifying solutions to tallying instances
tally_inferp.q used in the main reconstruction algorithm:

Substituting monomorphic type variables only when necessary Let us con-
sider the projection π1x, with x the binding variable associated to a lambda
variable x of type pβ1 ˆ β2q ^ α (with α, β1 and β2 monomorphic). When

182 Chapter 8. Practical Aspects

encountering the atom π1x for the first time, the main reconstruction algorithm
generates the following tallying instance:

tally_inferppβ1 ˆ β2q ^α 9ď γ1 ˆ γ2q

The solutions to this tallying instance can be captured in different ways. For
simplicity, we ignore solutions that make the left-hand side of the tallying instance
empty. The set of solutions to this tallying instance can then be captured by this
substitution ϕ (for clarity, we keep polymorphic type variables in the domain of
ϕ, even though tally_inferp.q is supposed to restrict the domain of the solutions
to VM):

ϕ “ tα⇝ ppγ1 ˆ γ2q _ ␣pβ1 ˆ β2qq ^α ; γ1 ⇝ γ1 ; γ2 ⇝ γ2u

If we keep this solution as is, we would have to backtrack to the definition of x
and apply ϕ, yielding for the parameter x the new type pβ1ˆβ2q^pγ1ˆγ2q^α.
However, this seems unnecessary: we could instead have kept the type of x as
it is, as the current type pβ1 ˆ β2q ^ α of x already allows typing π1x with β1,
which is a type “precise enough”.

To avoid backtracking unnecessarily and adding complexity to the types of pa-
rameters, we can simplify ϕ by making the following observation: the monomor-
phic type variable α can be removed from the domain of ϕ by composing ϕ

with the substitution tγ1 ⇝ β1 ; γ2 ⇝ β2u, yielding a new substitution
ϕ1 “ tγ1 ⇝ β1 ; γ2 ⇝ β2u. This new substitution does not substitute any
monomorphic type variable anymore, and thus backtracking is not necessary
anymore.

The substitution ϕ1 is less general than ϕ, in the sense that ϕ1 can be obtained by
composing ϕ with another substitution, but not the other way around. However,
once restricted to VM , ϕ1 becomes as general as ϕ, and it still allows getting a
precise type for the result of the projection. This kind of simplification can be
achieved systematically using additional tallying instances.

Avoiding the introduction of new type variables New monomorphic type
variables should only be introduced when necessary. For instance, a substitution
tα ⇝ Int ^ α ^ βu that would be solution to a tallying instance (with β a
new fresh type variable) should be simplified before being applied: the new type
variable β is unnecessary as it plays the same role as α. The simpler substitution
tα⇝ Int^αu should be preferred.

Introducing unnecessary type variables may have a dramatically negative impact
on performance: it may imply more solutions to the future tallying instances,
which may in turn generate more redundant intersection branches in the anno-
tation tree.

8.4. Memoization 183

8.4 Memoization

Due to the branching nature of the reconstruction algorithm, some atoms are re-
constructed and re-typed many times in the different branches of the annotation
tree. Even within the same branch, backtracking may force an atom to be re-typed.
While it is sometimes inevitable to re-type an atom, for instance if the context has
changed, in many cases it could be avoided by performing memoization to prevent
an atom to be re-typed twice under an equivalent context (with respect to its free
variables).

Memoization may be implemented at three levels: main reconstruction system,
substitution inference system, and algorithmic type system.

Algorithmic type system Implementing caching for the algorithmic type system
is very simple: the algorithmic type system should return the same type when it is
called on the same physical annotation object. Although the type returned by the
algorithmic type system also depends on the expression and the context (it does not
only depend on the annotation), annotations for the algorithmic type system are
specific to an expression and environment: if the environment or expression change,
then the annotation will be regenerated. Thus, caching for the algorithmic type
system can easily be implemented by adding a mutable field cached_type to the
structure of annotations: the first time the algorithmic type system is called on this
annotation, it computes the type of the expression and stores it in the cached_type

field, and the next times it can just return the type stored in cached_type.

Substitution inference system The substitution inference system takes as input
an environment, an atom or canonical form, and a partial annotation, and it returns
an annotation for the algorithmic type system. This time, we cannot store a cache
as a mutable field in the structure of partial annotations, as partial annotations
are destroyed, reconstructed and duplicated many times by the main reconstruction
algorithm: it would be a nightmare to make copies of these mutable fields and
invalidate them when necessary.

Instead, we can perform some basic memoization. For that, we use a mapping
from triplets pa,A,Γq to annotations for the algorithmic type system. Each time
the substitution inference system is called on a given atom a, partial annotation
A, and environment Γ, we look in this mapping for a value associated to the key
pa,A,Γ

ˇ

ˇ

fvpaqq. If it has one, we return this value, otherwise we compute the anno-
tation and store it in the mapping. The equality relation over the keys (to use for
the mapping) should be based on the semantic subtyping equivalence for the envi-
ronments Γ, and for the partial annotations A we can implement a naive structural
equality relation. It may be difficult to use an efficient mapping structure, such as a
hashtable or a binary tree, because defining a hashcode or a total order that is com-
patible with semantic equivalence is still an open problem. However, using a naive
data structure such as a list of pairs (key, value) is already enough to drastically
improve performance of the reconstruction, even though searching in the mapping
may be slow.

184 Chapter 8. Practical Aspects

Note that it is not necessary to perform memoization for the reconstruction of
canonical forms: it is enough to perform it for the reconstruction of atoms. Indeed,
canonical forms are just a succession of atoms: the expensive part in the recon-
struction of a canonical form is the reconstruction of the atoms composing it. Also,
a canonical form is less likely to be reconstructed multiple times in an equivalent
context, as its free variables are the union of all of those in the atoms composing it.

Main reconstruction system The implementation of memoization for the main
reconstruction algorithm is similar to the implementation of memoization for the
substitution inference system. We can implement it by using a mapping from triplets
pa,A,Γq to results R. The same data structure can be used to implement this
mapping as the type of the keys is the same (only the type of values is different: a
result R instead of an annotation a).

Memoization can be made more effective by reusing the same type variables
when possible: we should avoid having two different type variables in two different
branches that “play the same role”. For instance, if in a branch of our annotation
tree the type variable α is used to type the parameter of a λ-abstraction, and if
in another branch we use the type variable β for the same purpose, then it might
prevent memoization to occur between those two branches for atoms that depend
on this parameter. The rule [LambdaInfer] of the main reconstruction system
may be modified accordingly, so that when applied to the same λ-abstraction in two
different subderivations, it types its parameter with the same type variable α.

The impact on performance of implementing caching and other optimizations
seen in this chapter will be evaluated and discussed in Chapter 9 (Section 9.2.2).

Chapter 9

Prototype Implementation

Contents
9.1 Presentation of the prototype 185

9.1.1 Language and features . 185

9.1.2 Architecture of the implementation 194

9.2 Results and performance . 195

9.2.1 Type inference . 195

9.2.2 Performance . 201

This chapter presents a prototype implementation (Castagna et al., 2024b) for
the algorithmic type system and reconstruction algorithm. It implements the ex-
tensions and practical aspects discussed in the previous chapters. The features of
the prototype are described in Section 9.1. Then, the prototype is tested on several
examples in Section 9.2, where we evaluate its performance.

9.1 Presentation of the prototype

The prototype implementation fully implements the algorithmic type system, the
reconstruction algorithm, and the extensions presented in Chapter 7. The syntax
for the source language is inspired by the syntax of OCaml, with some modifications
and the addition of type-cases. This section presents this language and its different
features.

9.1.1 Language and features

9.1.1.1 Definition of types

Figure 9.1 presents some constants and built-in types of our language. For every
constant of the language, there exists a corresponding singleton type. In order to
distinguish them, type identifiers start with an uppercase, while constants start with
a lowercase. It is possible to declare a new constant, together with the associated
singleton type:

(∗ Defines a new value null and a singleton type Null ∗)
atom null

186 Chapter 9. Prototype Implementation

Constant Singleton type
true True

false False

nil Nil

i (with i P Integer) i

’c’ (with c P Char) ’c’

where Integer represents integers
written in decimal,

and Char represents characters.

Type Inhabitants
Any Every value
Empty ∅
Bool ttrue, falseu

Int Integer

i1--i2 ti P Integer | i1 ď i ď i2u

(--i2) ti P Integer | i ď i2u

(i1--) ti P Integer | i1 ď iu

Char Char

Figure 9.1: Built-in constants and types

Function types can be constructed with the arrow type constructor S -> T,
pair types with the product type constructor (T1,T2), and record types with the
constructor { fields ..} (for open records) and { fields } (for closed records).
We can also use the union |, the intersection &, the difference z, and the negation
„:

type TotalPredicate = Any -> Bool

type Coord = (Int , Int)

(∗ ’subtitle ’ field is optional , other fields are required ∗)
type Book = { id=Int , title=String , author=String , subtitle =? String ..}

type Falsy = False | "" | 0 | Null

type Truthy = ~Falsy

In the code above, TotalPredicate, Coord, Falsy and Truthy are type aliases.
Identifiers for type variables start with a ’ (for instance, ’a, ’b, ’typ, etc.).

There is no syntactic distinction between monomorphic and polymorphic type vari-
ables: whether a type variable can be instantiated or not depends on the context.
In particular, type variables appearing in the type of a top-level definition are poly-
morphic.

Recursive and parametric types are supported, allowing to encode lists:

type MyList ’a = Nil | (’a, MyList ’a)

type IntList = MyList Int (∗ Instantiation of a parametric type ∗)

Lists are encoded as chains of pairs ending with the constant nil, as defined by
the type MyList above. A built-in syntax for the types of lists is available. This
syntax allows expressing lists whose elements follow a regular expression, as defined
in Figure 9.2.

For instance, the type [Int ; Bool* ; Int] is inhabited by lists starting with
an integer, followed by any number of Boolean values, and finishing with an integer.
This type is equivalent to the type Pattern defined below:

type Chain ’a ’b = ’b | (’a, Chain ’a ’b)

type Pattern = (Int , Chain Bool (Int , Nil))

9.1. Presentation of the prototype 187

Type Inhabitants
List Lists
[r] Lists satisfying r
[] Same as Nil

String Same as [Char*]

"abc" Same as [’a’;’b’;’c’]

Regular expr r Meaning
T Element of type T
r||r Union
r;r Concatenation
r* Zero or more times
r+ One or more times
r? Zero or one times

Figure 9.2: Built-in types for lists, regular expressions, and strings

Any regular expression can be encoded similarly.
In the rest of this chapter, we will use the syntax of our prototype for writing

types, instead of the formal syntax. In particular, the type 1 will be noted Any, the
product t1 ˆ t2 will be noted (T1, T2), etc.

9.1.1.2 Programs and expressions

In addition to atom declarations and type definitions, a program can contain top-
level let definitions. The syntax for expressions is close to the OCaml syntax, with
the addition of type-cases (if . is . then . else .).

For instance, the example from the introduction can be written as follows (the
types inferred for these functions, and more, are detailed in Section 9.2):

atom null

type Falsy = False | "" | 0 | Null

type Truthy = ~Falsy

let toBoolean =

fun x -> if x is Truthy then true else false

let lOr (x,y) =

if toBoolean x (∗ is True (implicit) ∗)
then x else y

let id x = lOr (x,x)

Here is another example with operations on records:

let add_f_field r =

if r is {f=Int ..} then r else {r with f=0}

let remove_f_field r = r\f

let test =

((add_f_field { }).f, (add_f_field { f=42 }).f)

188 Chapter 9. Prototype Implementation

An expression can also contain let-bindings. These let-bindings fully benefit
from occurrence typing, allowing the example below to be typed (’a & Truthy ->

’a & Truthy) & (Falsy -> False):

let test x =

let y = toBoolean x in

if y is True then x else false

However, let-bindings in expressions are not generalized as generalization only hap-
pens at top-level (cf. Section 4.1.2). Consequently, without type annotations, the
definition test below is typed (Bool, Bool)1:

let test =

let id x = x in

(id true , id false)

while this one is typed (True, False):

let id x = x

let test = (id true , id false)

Our language also features pattern-matching. Internally, pattern-matching is
transformed into let-bindings and type-cases, as detailed in Section 7.5. The syntax
of patterns is detailed in Figure 9.3.

Pattern p Meaning
:T Match values of type T
x Capture matched value into variable x
x=c Assign constant c to variable x (match anything)
(p, p) Destruct a pair and pattern-match its components
{ l=p } Destruct a record of exactly one field l and pattern-match it
{ l=p ..} Destruct a record containing a field l and pattern-match it
p & p Conjunction of patterns
p | p Disjunction of patterns

Figure 9.3: Syntax for patterns

The example below uses pattern-matching to implement the hd function that
takes a list and returns its first element or nil if the list is empty. The first pattern,
:Nil, only matches empty lists (i.e., the constant nil). The second pattern, (h,

_) & :List, matches lists that are non-empty (:List matches lists, and among

1Even though it would be possible to infer the type (True, False) for test by first inferring the
overloaded type (True -> True) & (False -> False) for the local definition id, it would require user
annotations: the reconstruction algorithm by itself only infers an overloaded type for a function
when it is suggested by its body (and not by its future applications). This will be discussed in
Section 9.1.1.5.

9.1. Presentation of the prototype 189

them (h, _) can only match non-empty ones) and captures its first element into
the variable h.

let hd l =

match l with

| :Nil -> nil

| (h, _) & :List -> h

end

9.1.1.3 Recursive functions

The source language presented in Chapter 3 does not include recursive functions,
since from a theoretical viewpoint they are useless: Milner (1978, page 356) justifies
the addition of a “fixx.e” expression by the fact that their system cannot type Curry’s
fixpoint combinator, but our system can. For instance, here is an implementation
of Curry’s fixpoint combinator (for a call-by-value language):

let fixpoint = fun f ->

let delta = fun x ->

f (fun v -> (x x v))

in delta delta

For this function fixpoint, our prototype infers the following type:

((’a -> ’b) -> (’a -> ’b) & ’c) -> (’a -> ’b) & ’c

Though the fixpoint combinator is traditionally given the type ((’a -> ’b) ->

(’a -> ’b)) -> ’a -> ’b, our prototype infers a slightly more precise type by
intersecting the co-domain of the argument with ’c.

Using this function fixpoint, we can then implement recursive functions, such
as the factorial fact:

let fact_stub fact n =

if n is 0 then 1 else (fact (n-1)) ∗ n

let fact = fixpoint fact_stub

The prototype is able to infer the type ((--1) | (1--) -> Int) & (0 -> 1) for
fact (assuming that the multiplication * has type Int -> Int -> Int). Note that
this type is overloaded: the branch 0 -> 1 captures the behavior of the base case
(n = 0), while the branch (--1) | (1--) -> Int captures the recursive case. This
overloading is suggested by the type-case in fact_stub, yielding the following type
for fact_stub:

(Any -> 0 -> 1) & ((Int -> Int) -> (0 -> 1) & ((--1) | (1--) -> Int))

190 Chapter 9. Prototype Implementation

Then, the tallying instance generated by the application of the fixpoint combinator
to fact_stub generates several solutions that account for the different branches: in
particular, one solution yields the resulting type (0 -> 1) and another yields the
resulting type ((--1) | (1--) -> Int) 2. We will see more examples of recursive
functions in Section 9.2. Each time the same behavior occurs: recursive functions
are typed with an overloaded type that distinguishes the different cases of the body.

Although we do not strictly need recursive functions in the source language, from
a practical viewpoint the use of let rec definitions instead of a fixpoint combinator
is not only more convenient, but it may also improve the speed of reconstruction.
Thus, we implemented the classic let rec definitions:

let rec fact n =

if n is 0 then 1 else (fact (n-1)) ∗ n

This code is transformed by the prototype into the version that uses the fixpoint
combinator, with some additional type annotations to take the arity of the function
into account for improved performance, as we will see in Section 9.1.1.4. The typing
of recursive functions is thus composed of two phases: first, a type is inferred for the
stub function generated, and secondly, the type of the application fixpoint stub

is computed. As we will see in Section 9.2, the second step is usually significantly
slower than the first, as it requires solving a tallying instance that may involve many
type variables.

9.1.1.4 User type annotations

Type annotations, defined in Section 7.2, can be added to help the reconstruction
algorithm or to restrict the domain of a function. For instance, the hd function can
be written as follows, yielding the type [’a*] -> Nil | ’a (instead of ((’a, Any)

-> ’a) & ([] -> []) without type annotation):

let hd (l:[’a∗]) =

match l with

| :Nil -> nil

| (h, _) -> h

end

For a given parameter, multiple types can be specified using a “;” as separator.
Each type is then considered separately, yielding the overloaded type ([’a+] -> ’a)

& ([] -> Nil) for the function hd below:

let hd (l:[’a+];[]) =

match l with

2The tallying instance at issue is ((’a -> ’b) -> (’a -> ’b) & ’c) -> (’a -> ’b) & ’c 9ď (Any

-> 0 -> 1) & ((Int -> Int) -> (0 -> 1) & ((--1) | (1--) -> Int)) -> ’d. The substitution
t’a ⇝ 0 ; ’b ⇝ 1 ; ’c ⇝ Any ; ’d ⇝ 0 -> 1u is a solution that yields the resulting type 0 -> 1,
and the substitution t’a⇝ Int ; ’b⇝ Int ; ’c⇝ Any ; ’d⇝ Int -> Intu is another solution that
yields the resulting type Int -> Int.

9.1. Presentation of the prototype 191

| :Nil -> nil

| (h, _) -> h

end

For recursive functions, it is also possible to annotate the type of the result:

let rec fact (n:Int) : Int =

if n is 0 then 1 else (fact (n-1)) ∗ n

This type information is forwarded to the stub function generated when encoding
the recursive function as a fixpoint. In our case, the first parameter of fact_stub

will be annotated with Int -> Int. Note that annotating the type of the result
is only possible for recursive functions (since it only impacts the type of the first
parameter of the stub function), and that the final type inferred (after applying the
fixpoint) may have a different codomain. For instance, in the special case where
the function is indicated as being recursive but never calls itself, then writing an
annotation for the result type has no impact. This is illustrated by the following
definition, for which the type ’a -> ’a is inferred:

let rec id x : Int = x

Type variables used in user type annotations are not substituted by the recon-
struction algorithm. If we want to specify an initial type for a parameter but still
allow its type variables to be substituted during the reconstruction process, we can
use type variable identifiers starting with ’_. For instance, a parameter annotated
with ’_a -> ’_b is initially given the type ’_a -> ’_b (instead of a single fresh
type variable), but the reconstruction algorithm is still allowed to substitute ’_a

and ’_b during the reconstruction of the body. This kind of constraint can be used
to reduce the search space when we already know the shape of a parameter, thus
improving performance. For instance, the recursive fact function can be encoded
more efficiently with the following code:

let fact_stub (fact:’_a -> ’_b) n =

if n is 0 then 1 else (fact (n-1)) ∗ n

let fact = fixpoint fact_stub

As we can see, the parameter fact of fact_stub is annotated with ’_a -> ’_b as
we know that this must be a function of arity at least one. If fact_stub had an
additional parameter, then the parameter fact would be annotated with ’_a ->

’_b -> ’_c. While this annotation may seem trivial, it actually constrains the type
of the parameter fact to be a single arrow (and, in particular, not an intersection of
arrows), which can sometimes greatly reduce the search space and improve perfor-
mance. While this does not make any difference on this simple function fact_stub

(as fact is only called once on an argument of type Int, the reconstruction never
tries to give its parameter fact an overloaded function type), we will see in Sec-

192 Chapter 9. Prototype Implementation

tion 9.2 another example of recursive function, flatten, whose inference is about 4
times faster with this simple annotation.

Lastly, type annotations can be provided for top-level definitions. These type
annotations are ignored when typing the body of the definition, but are compared
afterwards with the type inferred for the definition: if the inferred type is smaller
than the annotated type (by the ŸT order, cf. Definition 78), then the type-checking
is successful, and the type used for the top-level definition is the annotated one.
Otherwise, the type-checking fails. As an example, consider the two following top-
level definitions:

let a : Int -> Int = fun x -> x

let b : Bool = fun x -> x

The top-level definition a type-checks, yielding the type Int -> Int, while the top-
level definition b does not type-check (“the type inferred is not a subtype of the type
specified”). This can be useful if the user wants to check that a top-level definition
has a given type, or wants to propose a simpler type for this top-level definition.

9.1.1.5 Generalizing let-bindings

Our type system only generalizes top-level definitions (cf. Chapter 4). While this is
not an issue from the perspective of the declarative and algorithmic type system, as
intersection types can be used locally in place of parametric polymorphism, it does
have an impact on the reconstruction algorithm.

For instance, consider the following definition:

let test_no_gen x y =

let pack u v = (u,v) in

(pack x y, pack y x)

The type inferred for pack is ’a -> ’b -> (’a,’b). However, as it is not
a top-level definition, the type variables ’a and ’b are not generalized: they stay
monomorphic during the typing of the body of test_no_gen. Consequently, in order
for both applications pack x y and pack y x to be typeable, the reconstruction
algorithm infers that x must be of type ’a and of type ’b, and similarly that y must
be of type ’b and of type ’a. After some simplifications, our prototype yields the
following type for test_no_gen: ’a -> ’a -> ((’a,’a),(’a,’a)).

While this type is correct, it could be more general: the parameters x and
y do not need to have the same type, and pack could be typed ’a -> ’b ->

((’a,’b),(’b,’a)). Indeed, this is the type we obtain if we move pack at top-
level:

let pack u v = (u,v)

let test_toplevel x y =

(pack x y, pack y x)

9.1. Presentation of the prototype 193

By doing so, the type of pack is generalized before reconstructing the annotations for
the two applications pack x y and pack y x, and thus the reconstruction algorithm
is able to type these two applications independently, using different instantiations.

In order to infer the more general type while still allowing the user to define
pack inside test_no_gen, a new let gen keyword has been introduced:

let test_gen x y =

let gen pack u v = (u,v) in

(pack x y, pack y x)

Let-definitions that use the gen keyword are moved at top-level so that they can
be generalized. They receive variables in their closure as extra parameters. For
instance, the code above is transformed into the following top-level definitions:

let pack x y u v = (u,v)

let test_gen x y =

(pack x y x y, pack x y y x)

Although this transformation is advantageous in some cases, as it allows gen-
eralizing intermediate let definitions, it comes with a counterpart: the correlation
between occurrences of a subexpression inside the let gen definition and those out-
side is lost, making occurrence typing inoperative on those occurrences. Indeed,
by moving a let-definition at top-level, the subexpressions that it had in common
with the rest of the initial expression no longer share the same bindings, but in-
stead are bound to other bindings in a different top-level definition. As an example,
consider the following definition test_no_occ_typ (where the syntax <T> is used to
“magically” construct an expression of type T):

let f = <Any -> Any > (∗ "magic" expression of type Any -> Any ∗)
let test_no_occ_typ x =

let gen g y = if f x is Int then x else y in

if f x is Int then g false else g x

In the definition test_no_occ_typ, the occurrence of f x inside the definition of g

and the one after will be bound to two independent bindings in two distinct top-level
definitions. As a result, it cannot be deduced that, during the call g false in the
first branch of the type-case, only the first branch of the type-case in g can be taken.
In the end, the type inferred for test_no_occ_typ is ’a -> False | ’a, while it
would be ’a -> ’a without the gen keyword.

This choice between generalization and occurrence typing is not a limitation of
the algorithmic type system, as intersections can be used in place of parametric
polymorphism for local definitions. However, the reconstruction algorithm is not
complete and cannot systematically infer the necessary intersections. In particular,
in the absence of user type annotations, it does not try to type a λ-abstraction
with an intersection type if it is not suggested by its own body. Consequently, later
applications of this λ-abstraction in the same top-level definition may result in a

194 Chapter 9. Prototype Implementation

unification of the types of the arguments on which this λ-abstraction is applied.
This can be solved by adding user type annotations to force the inference of an
overloaded type for a λ-abstraction even when it is not suggested by its body:

let test_inter x y =

let pack (u:’a;’b) (v:’a;’b) = (u,v) in

(pack x y, pack y x)

The let gen construct is an alternative solution, relying on parametric polymor-
phism rather than intersections. This solution may lead to simpler types (because
no intersection is used) and thus better performance, but is incompatible with oc-
currence typing.

9.1.2 Architecture of the implementation

The prototype is implemented in OCaml (about 4600 lines of code). It uses the
implementation of set-theoretic types of the CDuce library. Note that it does not
feature an interpreter (the code can be typed but cannot be executed). An online
version can be tested at the following address: https://www.cduce.org/dynlang/,
and the source code is available on Zenodo: Castagna et al. (2024b). The online
version of the prototype is compiled using Js_of_ocaml and is about 8 times slower
than the native version.

The global structure of the source code is as follows:

webeditor/ This directory contains code for the interface of the online version.
It consists in an integration of the type-checker, compiled from the OCaml
sources to JavaScript using Js_of_ocaml, into the Monaco Editor (Microsoft).

src/ Contains the OCaml code for the parser and type-checker.

src/main/ Contains the code for the command line interface (for the native ver-
sion), as well as the code for the JavaScript wrappers (for the online version).
These wrappers allow calling the type-checker from JavaScript code.

src/parsing/ Contains the lexer, parser and the Abstract Syntax Tree (AST) of
the source language.

src/system/ Contains the AST for MSC forms and the implementation of the
algorithmic type system and reconstruction algorithm. The main ideas and
algorithms presented in this manuscript are implemented in this directory.

src/types/ Wrapper around the CDuce library that provides the operations on
types (subtyping, DNF, tallying, etc.) and implements some auxiliary func-
tions over types (simplification, etc.). One difference with the interface of the
CDuce library is that, in the interface of our wrapper, there are two kinds of
type variables (monomorphic and polymorphic), while in CDuce this distinc-
tion is not at the level of type variables but at the level of type operators

https://www.cduce.org/dynlang/

9.2. Results and performance 195

(type operators that manipulate type variables take an additional parameter
specifying which type variables should be considered as monomorphic).

src/utils/ Some straightforward utility modules and functions.

In order to clarify the contributions of this prototype, here is a summary of what
comes from the CDuce library, and what is implemented in the prototype:

Provided by CDuce Representation of set-theoretic types using Binary Decision
Diagrams (BDD) with support for records and type variables, subtyping, ex-
traction of the DNF, type operators (π1, π2, ˝, etc.), substitutions, tallying,
pretty-printing of types.

Implemented in this prototype Parser for the source language, conversion to
MSC form, algorithmic type system and reconstruction algorithm (with the
extensions of Chapter 7 and the optimizations of Chapter 8). It also im-
plements some specific auxiliary operators on types, such as a simplification
function for function types.

The implementation of the prototype aims to be as close to the formalization as
possible. For instance, here is an excerpt implementing the rules for type-cases of
the reconstruction system:

98 | Ite (v, tau , _, _), InferA ->

99 if memvar v then (∗ not [CaseVar] ∗)
100 let t = vartype v in

101 if subtype t empty then Ok TypA (∗ [CaseEmpty] ∗)
102 else if subtype t tau (∗ [CaseThen] ∗)
103 then

104 let psi = tallying_infer [(t, empty)] in

105 (∗ Simplifications of Chapter 8 ∗)
106 let psi = simplify_tallying_infer env empty psi in

107 if List.exists Subst.is_identity psi

108 then Ok TypA

109 else (∗ Conclusion of [CaseThen] ∗)
110 needsubst psi TypA ThenVarA

111 ... (∗ Other rules ∗)

9.2 Results and performance

9.2.1 Type inference

In this section, we discuss the type inferred by our prototype on several examples.
Types inferred are written in comments, above each top-level definition. The time
taken for inferring the type of each example will be detailed in Section 9.2.2.

196 Chapter 9. Prototype Implementation

type Falsy = False | "" | 0

type Truthy = ~Falsy

(∗ (Truthy -> True) & (Falsy -> False) ∗)
let toBoolean x =

if x is Truthy then true else false

(∗ ((’a \ Falsy , Any) -> ’a \ Falsy) & ((Falsy ,’b) -> ’b) ∗)
let lOr (x,y) =

if toBoolean x then x else y

(∗ ’a -> ’a ∗)
let id x = lOr (x,x)

The code above features the examples used in the introduction. Note that the
type inferred for id is the simple polymorphic type ’a -> ’a: though the recon-
struction algorithm generates two branches ’a & Falsy -> ’a & Falsy and ’a &

Truthy -> ’a & Truthy, the prototype simplifies the resulting overloaded type into
’a -> ’a.

(∗ (Nil -> "Nil") &

([Char+] -> "String ") &

(Char -> "Char") &

(Int -> "Number ") &

(Bool -> "Boolean ") &

(Any \ String \ Char \ Int \ Bool -> "Object ") ∗)
let typeof x =

match x with

| :Nil -> "Nil"

| :String -> "String"

| :Char -> "Char"

| :Int -> "Number"

| :Bool -> "Boolean"

| :Any -> "Object"

end

This code implements a typeof function, inspired by JavaScript, that returns a
string describing the type of the argument. One interesting thing to note here is the
type of the second branch: [Char+] -> "String". While we could expect it to be
String -> "String", this would actually be incorrect because of our encoding of
strings: the empty string "" is encoded by the constant nil, and thus it takes the
first branch of the pattern-matching, yielding the result "Nil".

type Expr = ("const", Int) | ("add", (Expr , Expr)) | ("uminus", Expr)

9.2. Results and performance 197

(∗ ((" const", ’a) -> ’a) & (Expr -> Int) ∗)
let rec eval e =

match e with

| (:"add", (e1, e2)) -> (eval e1) + (eval e2)

| (:"uminus", e) -> 0 - (eval e)

| (:"const", x) -> x

end

The eval function implements the evaluation of a very basic AST for arithmetic
expressions. The type of the AST, Expr, is defined beforehand, but only to improve
the readability of the pretty printing: without this definition, the type inferred for
eval would be equivalent, though written in a less readable way.

The branch ("const", ’a) -> ’a captures the fact that if our arithmetic ex-
pression is only composed of a constant (with no arithmetic operation performed on
it), then this constant does not even need to be an integer as it is directly returned.
While this branch is correct for this implementation of eval, we might want to forbid
this case, which can be done either by making the last case of the pattern-matching
more restrictive, or by adding a type annotation on the parameter e as follows:

(∗ Expr -> Int ∗)
let rec eval_ann (e:Expr) =

match e with

| (:"add", (e1, e2)) -> (eval_ann e1) + (eval_ann e2)

| (:"uminus", e) -> 0 - (eval_ann e)

| (:"const", x) -> x

end

The traditional map function can be implemented as follows:

(∗ ((’a -> ’b) -> ([’a] -> [’b]) & ([’a+] -> [’b+]) & ([] -> [])) &

(Any -> [] -> []) ∗)
let rec map f l =

match l with

| :Nil -> nil

| (e, l) & :List -> ((f e), map f l)

end

Again, the type inferred is overloaded. It subsumes the usual type inferred by
Hindley-Milner type systems, stating that an application of map yields a function
that maps lists of α’s into lists of β’s. In particular, our type captures the specific
case where map receives an empty list as second argument (in which case the first
argument can be of any type, and it returns an empty list), as well as the case where
it receives a singleton list as second argument (in which case it returns a singleton
list).

This example can be used to illustrate the lack of principal types. Indeed, the
two specific cases specified above can be generalized: for any natural number n, if

198 Chapter 9. Prototype Implementation

map receives as second argument a list of length n, then it returns a list of length n.
Each of these behaviors can be captured by a type (for instance, the type (’a -> ’b)

-> [’a;’a] -> [’b;’b] for n “ 2), and each of these types can be checked by the
algorithmic type system (provided that the function map is annotated accordingly).
Unfortunately, it is not possible to capture all these behaviors in a single type, as
it would require an infinite intersection (which is not allowed, as it would make
subtyping undecidable).

A type annotation can be added in order to infer a simpler type for map:

(∗ (’a -> ’b) -> [’a∗] -> [’b∗] ∗)
let rec map_ann f (l:[’a∗]) =

match l with

| :Nil -> nil

| (e,l) -> ((f e), map_ann f l)

end

Note that we do not need to annotate the type of every parameter: here, we just
annotated l. Still, this annotation has consequences on the whole reconstruction:
in particular, the case where f has type Any is not typeable anymore.

The following code is an example of a common programming pattern that be-
comes typeable thanks to the expressivity of set-theoretic types combined with oc-
currence typing:

(∗ (’b -> Any \ True) & (’a -> Any) -> [(’a | ’b)∗] -> [(’a \ ’b)∗] ∗)
let rec filter_ann (f: (’a->Any) & (’b -> ~True)) (l:[(’a|’b)∗]) =

match l with

| :Nil -> nil

| (e,l) ->

if f e is True

then (e, filter_ann f l)

else filter_ann f l

end

(∗ (Nil -> False) & (Any \ Nil -> True) ∗)
let not_nil x = if x is Nil then false else true

(∗ [(1 | 3 | 42)∗] ∗)
let filtered_list = filter_ann not_nil [1;3; nil ;42]

(∗ ([Int∗] -> Int) & ([] -> 0) ∗)
let rec sum l =

match l with

| :Nil -> 0

| (n,tl) -> n + (sum tl)

end

9.2. Results and performance 199

(∗ Int ∗)
let test = sum filtered_list

First, a filter_ann function is defined, taking as first parameter a characteristic
function for the set ’a | ’b whose type precises that the elements in ’b do not satisfy
the predicate, and as second parameter a list of ’a | ’b elements. Our prototype
is able to infer that the result is a list of elements in ’a \ ’b. This is only possible
thanks to occurrence typing: for deriving this type, the type-checker has to deduce
that when f e is True, then e has type a \ ’b.

This filter_ann function is then used to remove nil values in a list whose
elements are either integers or nil values. The resulting type captures the fact that
the list does not contain nil values anymore. This allows applying the function sum

on this new filtered list.
Note that this precise typing of the filter_ann function requires type an-

notations. By removing type annotations from the parameters of the definition
filter_ann, then the reconstruction does not terminate after a minute. An inter-
mediate case is when only the second parameter l is annotated:

(∗ ((’b -> Any) -> [’b∗] -> [’b∗]) &

((’a -> Any \ True) -> [’a∗] -> []) ∗)
let rec filter f (l:[’a∗]) =

match l with

| :Nil -> nil

| (e,l) ->

if f e is True

then (e, filter f l)

else filter f l

end

This type annotation may seem trivial, but actually it significantly reduces the
search space as the prototype does not explore additional specific cases for l (when
l is the empty list [], when it is a singleton list [’a], etc.).

The type inferred for filter is less precise than the one we get for filter_ann,
but it is still more precise than the traditional type (’a -> Bool) -> [’a*] ->

[’a*]. In particular, the branch (’a -> Any \ True) -> [’a*] -> [] captures the
fact that if the characteristic function is never true for elements in ’a, then filtering
a list of ’a elements yields an empty list.

The last example is an implementation of a deep flatten:

(∗ ([] -> ’e -> ’e) & ([’c] -> ’d -> (’c,’d)) & ([’a+] -> ’b -> (’a,T))

where T = (’a,T) | ’b ∗)
let rec concat x y =

match x with

| :Nil -> y

| (h, t) -> (h, concat t y)

200 Chapter 9. Prototype Implementation

end

(∗ [’a∗] -> [’b∗] -> [’a∗ ; ’b∗] ∗)
let concat : [’a∗] -> [’b∗] -> [’a∗ ; ’b∗] = concat

type Tree ’a = (’a \ List) | [(Tree ’a)∗]

(∗ (Tree ’a -> [(’a \ List)∗]) & (’b \ List -> [’b \ List]) ∗)
let rec flatten x =

match x with

| :Nil -> nil

| (h, t) & :List -> concat (flatten h) (flatten t)

| _ -> [x]

end

(∗ Tree ’a -> [’a∗] ∗)
let flatten : Tree ’a -> [’a∗] = flatten

(∗ [(1--7)∗] ∗)
let flatten_test = flatten [[1;[2];3];4;[5;6;[];[7]]]

This code first defines a concat function. The type inferred for it is overloaded,
separating the cases where the first argument is an empty list, a singleton list, and
a non-empty list. Another interesting thing to note is that it does not require the
second argument to be a list: indeed, the second argument could be anything as it is
never inspected. While this type is correct, we might prefer for concat the simpler
and more readable type [’a*] -> [’b*] -> [’a* ; ’b*]. This is the purpose of
the second top-level definition that explicitly specify this type using a top-level type
annotation.

Then, the flatten function transforms arbitrary nested lists into the list of their
elements. Greenberg (2019) considers this function to be the ultimate test for any
type system: as he explains, this simple polymorphic function defies all type systems
since of all existing languages, none can reconstruct a type for it and only a couple
of languages can check its explicitly typed version: CDuce and Haskell (the latter
by resorting to complex metaprogramming constructions). Our system reconstructs
a precise type for flatten as shown by the first arrow in its intersection type, which
states that flatten is a function that takes a tree (i.e., either a list of elements that
are trees, or a value different from a list) and returns the list of elements of the
tree that are not lists; the other arrow of the intersection states that when flatten
is applied to an element different from a list, then it returns the list containing only
that element.

Note that the type of flatten is reconstructed without needing any type anno-
tation. However, for readability reasons, we have rewritten the inferred type: the
type actually printed by the prototype does not feature any reference to Tree ’a,
but instead redefines it: the problem of recognizing patterns of previously-defined
type aliases for the pretty-printing is hard, and our prototype delegates this task to

9.2. Results and performance 201

Naive Pruning Caching P + C
typeof 817 38 227 30
eval > 100 000 836 466 325
eval_ann 130 135 42 49
map > 100 000 214 196 112
map_ann 53 62 32 30
filter 494 424 198 205
filter_ann 64 77 22 22
filtered_list 11 9 5 5
concat 522 185 112 101
concat_ann 39 50 20 19
flatten 2 006 499 338 259
flatten_ann 112 113 40 47
flatten_test 16 16 8 9
bal 21 560 19 678 2 263 2 174

Figure 9.4: Time taken for the reconstruction (in milliseconds)

the CDuce library.
The type of flatten is then changed for a simpler one (the second branch is

cut) using top-level type annotations, and it is tested on a tree whose leaves are
the integers from 1 to 7. As expected, the prototype gives to the result the type
[(1--7)*].

This example also illustrates the necessity to keep types simple. This is done
here using top-level type annotations, though it could also be achieved using type
annotations for the parameters of concat and flatten. If we keep the more complex
overloaded type inferred by the prototype for concat, then it becomes unable to infer
the type of flatten in a reasonable time (unless it is annotated): this is because it
tries to explore even more cases when reconstructing the type of concat (flatten

h) (flatten t). This limitation will be discussed in Chapter 10.

9.2.2 Performance

Our prototype focuses on proximity with the formalization, rather than on per-
formance: we used it mainly to explore and test our system, which is why it is
implemented in a purely functional style with persistent data structures. Nonethe-
less, the optimizations presented in Chapter 8 have been implemented in order to
mitigate the cost of backtracking and branching. This section aims to evaluate
performance of the prototype and the impact of these optimizations.

Figure 9.4 regroups the times taken to reconstruct the types of the definitions
of the previous section, and for an additional longer definition bal available at the
end of this section. Times are written in milliseconds and correspond to the native
version of the prototype.

202 Chapter 9. Prototype Implementation

The first column lists some definitions of the previous section (suffixed with
_ann when parameters have been explicitly annotated with their types). The sec-
ond column contains the time taken for type checking each definition, in a version
of the prototype where caching and intersection nodes pruning have been disabled
(cf. Chapter 8). Note that the type simplification heuristics and type decomposi-
tions pruning are still effective (these are lightweight optimizations that we do not
measure in this section). The third column contains times for an implementation
with pruning enabled and caching disabled, the fourth column contains times for
an implementation with caching enabled and pruning disabled, and the last column
contains times for the actual prototype with both pruning and caching enabled.

The first definition, typeof, illustrates the efficiency of pruning. This example
only contains constants and type-cases (resulting from the encoding of pattern-
matching). Without pruning, for each possible combination of branch selection of
the type-cases, the corresponding type for the parameter x is explored: Any, Any

\ Nil, Any \ String, ..., Any \ Nil \ String, ... This high number of branches
implies a lot of redundancy (some atoms are typed many times under equivalent
contexts), which can be partially mitigated by implementing caching. However, the
smallest reconstruction time is obtained with pruning: instead of exploring all the
types listed above for x, the most specific cases are explored first (Nil, String \

Nil, Char, Int, Bool, Any \ String \ Char \ Int \ Bool) and the other cases
are trimmed as they do not cover new domains. In addition to a faster typing, this
results in a simpler type. Without pruning, the type inferred is a huge intersection of
arrow types, featuring one arrow type per combination of type-case branch selection.
This huge intersection can be reduced using type simplification heuristics, but this
takes time and may still yield a less readable type. Indeed, the type inferred for
typeof when the pruning is disabled is the following:

(Bool | Char | Nil -> "Boolean" | "Char" | "Nil") &

(Any \ (Bool | Char | [Char+]) -> "Nil" | "Number" | "Object") &

(Any \ (Bool | Char | [Char+]) -> "Nil" | "Number" | "Object") &

(Any \ (Bool | Int | []) -> "Char" | "Object" | "String") &

(Bool | Int | [Char+] -> "Boolean" | "Number" | "String")

While we can check that this type is equivalent to the more intuitive type (Nil ->

"Nil") & ([Char+] -> "String") & ..., it is far less readable as the domain of
the branches are not disjoint.

The second definition, eval, cumulates type-cases with more complex atoms
(projections, applications). As eval is a recursive function, it is transformed into
a stub function that takes a function as first parameter (intuitively, itself), before
applying the fixpoint combinator. Without pruning nor caching, the reconstruction
of the stub function generates too many intersection branches for it to be typed
in a reasonable time (the execution has been stopped after 100 seconds). Surpris-
ingly, adding caching only (without pruning) is enough to drastically reduce the
reconstruction time below a second. In addition to avoiding redundancy by not

9.2. Results and performance 203

reconstructing and/or retyping atoms under equivalent contexts, using caching has
another emerging consequence: it reduces the number of intersection branches gen-
erated by the reconstruction algorithm. Indeed, by reusing previous reconstruction
results and types as much as possible, it reduces the number of different type vari-
ables and different substitutions generated by the reconstruction algorithm. In other
words, it makes similar branches to generate similar results, which reduces the com-
plexity of types and the number of different type variables overall. Pruning can
also be used to avoid the combinatorial explosion, though it implies more overhead
than caching. While caching passively reduces the number of intersection branches
generated by increasing the sharing of type variables, pruning actively tries to trim
redundant branches. In this case, these two optimizations are complementary: the
best inference time is obtained by combining them.

The same observations can be made for the other non-annotated recursive func-
tions: map, filter, concat, and flatten. Though concat can be typed in less
than a second even without pruning nor caching, it can be worth annotating it in
order to obtain a simpler, not overloaded type. Indeed, if we keep in the context
the overloaded type inferred for concat, our prototype fails to infer a type for the
non-annotated version of flatten in a reasonable time (the fixpoint application
timeouts because the type of the stub has too many branches and type variables).
This illustrates that user type annotations are not only useful for speeding up the
type inference, but also for ensuring that types remain as simple as possible.

The annotated versions of the recursive functions are a lot faster to type-check:
even the implementation without pruning nor caching types them in less than 150ms.
For those annotated versions, adding pruning does not improve performance: as the
parameters are annotated with their types, the main reconstruction algorithm does
not generate any new intersection node. Similarly, definitions that do not feature
lambda-abstractions, such as filtered_list and flatten_test, are fast to type-
check as there is no parameter type to infer.

Lastly, the bal definition, whose code is written below, is a longer example
combining several pattern-matching expressions and type-cases (6 different pattern
matches and 4 type-cases). This function is adapted from the bal(ance) function
used in the module Map of the OCaml standard library (OCaml, 2023). For each
type-case and pattern to match, the reconstruction algorithm decomposes the type
of the associated binding variable. These type decompositions compose, yielding
a wide annotation tree: the implementation without caching takes about 20 sec-
onds to reconstruct it. In contrast to the previous examples, this one illustrates a
combinatorial explosion due to type decompositions (because of the type-cases and
pattern matches), while for the previous examples it was mostly due to intersection
nodes (because of the inference of the types of the parameters). This is the reason
why our prototype shows poor performance for this example even in the presence of
type annotations. The caching system has a huge impact on performance, dividing
the type-checking time by almost 10. This is quite expected, as caching partially
mitigates the negative impact of type decompositions: though a type decomposi-
tion duplicates a whole subtree of the annotation tree, thus causing redundancy as

204 Chapter 9. Prototype Implementation

the same atom must now be typed in several branches, a significant part of this
redundancy can be removed with memoization.

(∗ <T> is a "magic" expression of type T ∗)
let (>=) = <Int -> Int -> Bool >

let (>) = <Int -> Int -> Bool >

let invalid_arg = <String -> Empty >

atom key

type T ’a =

Nil | (T ’a, Key , ’a, T ’a, Int)

let height x =

match x with

| :Nil -> 0

| (_,_,_,_,h) -> h

end

let create l x d r =

let hl = height l in

let hr = height r in

(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

let bal (l:T ’a) (x: Key) (d:’a) (r:T ’a) =

let hl = match l with :Nil -> 0 | (_,_,_,_,h) -> h end in

let hr = match r with :Nil -> 0 | (_,_,_,_,h) -> h end in

if hl > (hr + 2) then

match l with

| :Nil -> invalid_arg "Map.bal"

| (ll, lv, ld, lr, _) ->

if (height ll) >= (height lr) then

create ll lv ld (create lr x d r)

else

match lr with

| :Nil -> invalid_arg "Map.bal"

| (lrl , lrv , lrd , lrr , _)->

create (create ll lv ld lrl) lrv lrd (create lrr x d r)

end

end

else if hr > (hl + 2) then

match r with

| :Nil -> invalid_arg "Map.bal"

| (rl, rv, rd, rr, _) ->

9.2. Results and performance 205

if (height rr) >= (height rl) then

create (create l x d rl) rv rd rr

else

match rl with

| :Nil -> invalid_arg "Map.bal"

| (rll , rlv , rld , rlr , _) ->

create (create l x d rll) rlv rld (create rlr rv rd rr)

end

end

else (l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))

let bal : T ’a -> Key -> ’a -> T ’a -> T ’a = bal

Conclusion While the simple optimizations seen in Chapter 8 significantly im-
prove performance, they are still far from what would be considered acceptable for
real applications. To be used in mainstream languages, the type system has to be
adapted and restricted to ensure better and uniform performance. To this purpose,
once the type of a function has been inferred, its parameters should be annotated
accordingly so that the whole type inference does not need to run again on this
function. This way, although it may take some time to type-check a function for the
first time as the types of its parameters need to be inferred, subsequent calls to the
type-checker should be faster. This could be further coupled with slicing to limit
the combinatorial explosion that may be caused by the type decompositions in large
functions such as bal: our reconstruction could be applied to very delimited regions
that would limit the possibility of backtracking. Pieces of code that are estimated
to be independent of the rest (in terms of occurrence typing) could be enclosed in
blocks that contain their own copies of bindings, and so type decompositions would
not escape those blocks and thus would not compose with type decompositions of
other blocks. Additionally, we believe that some more language-oriented optimiza-
tion techniques could be of help. An example is what the development team of Luau
did on the occasion of its recent switch to semantic subtyping (Jeffrey, 2022). The
developers did this switch by implementing a two-phase approach: first, a sound
syntactic system, fast but imprecise, is used to try to prove subtyping, and only if
it fails, the computationally expensive semantic subtyping inference is used (Luau
targets the game developers’ community, which is quite picky on system responsive-
ness). We think not only that such a staged approach could be applied in our case,
but also that the partial results of the first phase could be used to improve per-
formance of the later phases. These techniques are language-dependent, and quite
different from the algorithmic aspects developed here, though they will completely
rely on it.

Chapter 10

Discussion and Conclusion

Contents
10.1 Limitations . 207

10.2 Towards completeness . 209

10.3 Related work . 213

10.3.1 Formalizations using set-theoretic types 213

10.3.2 Other formalizations . 214

10.3.3 Dynamic languages . 217

10.4 Conclusion and future work 219

This manuscript describes an approach for typing dynamic languages using ex-
pressive types, featuring ad hoc polymorphism, parametric polymorphism, and oc-
currence typing. This implies, however, that type inference cannot be complete (in
particular due to the lack of principality). This contrasts with other approaches,
such as MLstruct (Parreaux and Chau, 2022), that favors a decidable inference with
principal typing, at the cost of expressivity.

This choice of expressivity over principality is motivated by idioms of dynamic
languages, such as overloading, and by frequent patterns that require intersection
of arrow types and occurrence typing in order to be typed, such as the filter ex-
ample described in Chapter 9. The price to pay is the absence of principal types
and the complexity of inference. Among the multiple types derivable for an ex-
pression, the user may sometimes have to find a sweet spot between precision and
simplicity and write a type annotation accordingly. These limitations are discussed
in Section 10.1. Section 10.2 explains in more details the different sources of incom-
pleteness of the type reconstruction, and how user type annotations could be used
to retrieve the expressivity of the algorithmic type system. Section 10.3 provides a
comparison between our approach and related work. Finally, Section 10.4 concludes
this manuscript and describes future work that may be necessary in the perspective
of applying this type system to a real programming language.

10.1 Limitations

The system presented in this manuscript has several limitations, which are detailed
in this section.

208 Chapter 10. Discussion and Conclusion

Incompleteness. The first limitation that comes in mind is probably the incom-
pleteness of the reconstruction algorithm (Chapter 6), which derives from the lack
of type principality. This has already been discussed in Section 6.5.2, and we saw in
Chapter 9 an example of function for which no principal type exists: the recursive
function map. Incompleteness can be mitigated by adding explicit type annotations
in the language: this will be discussed in Section 10.2.

Performance. The reconstruction algorithm uses backtracking, and at each of its
passes it may try to re-type the same piece of code several times. This is inherent
to the use of unions and intersections: the union-elimination rule repeatedly type-
checks the same expression, using different type hypotheses for a given subexpres-
sion; the intersection-introduction rule verifies that an expression has all the types of
an intersection, by checking each of them separately. Both features are very penal-
izing in terms of performance, and any naive implementation of the reconstruction
algorithm would yield type-inference times that grow exponentially with the size of
the program. Clearly, this is an issue that must be addressed if we want to apply
our system to real-world dynamic languages, and further work is needed to frame
and/or constrain the current system so that its performance becomes acceptable.
Fortunately, the room for improvement is significant: the prototype presented in
Chapter 9 is a proof of concept whose implementation was defined to faithfully
simulate the reconstruction inference rules, rather than to obtain an efficient exe-
cution; but the simple addition of textbook memoization techniques improved its
performance by an order of magnitude (cf. Section 9.2).

Side effects. Another limitation of our system is that it is not sound in the pres-
ence of side effects. Indeed, the union-elimination rule regroups different occurrences
of the same subexpression into the same variable, and decomposes the type of this
variable. This is sound only if all evaluations of these different occurrences return
results whose types are all in the same part of the decomposition. While this is true
for pure expressions, where syntactically equivalent expressions evaluate to the same
value, this can be invalidated by the presence of side effects. From the perspective
of the algorithmic type system, this transpires in the transformation of an initial
expression into its MSC form. As we explain in Section 5.1, these forms are called
“maximal sharing” since all equivalent subexpressions (in the sense stated by Defi-
nition 60) of the initial expression must be bound by the same variable, so that any
refinement of the type of one subexpression (e.g., as a consequence of a type-case)
is passed-through to all equivalent subexpressions. Again, this is sound only if all
evaluations of equivalent subexpressions return results that have the same types.
In the future work section (Section 10.4), we suggest some research directions on
how to modify the equivalence relation of Definition 60 to make our system work
in the presence of side effects. Nevertheless, the work presented here is closer to be
adapted/adaptable to pure functional languages such as Erlang and Elixir, than to
languages such as JavaScript or Python. It may also be worth pointing out that our

10.2. Towards completeness 209

approach works only for strict languages, since it uses a semantic subtyping relation
that is unsound for call-by-name evaluation strategies (Petrucciani et al., 2018).

10.2 Towards completeness

While the reconstruction is not complete, the algorithmic type system has been
proved complete with respect to the declarative one: any program typeable with
the declarative type system can be typed with the algorithmic one, provided that
the right annotation tree is used. Consequently, by giving the user a way to control
the different aspects of the annotation tree, for instance through type annotations
in the language, we could expect any program typeable with the declarative type
system to be typeable with the actual type-checker implementation. We detail here
different aspects of the annotation trees that may need feedback from the user, and
discuss, for each, how it can be integrated in the language.

Types of λ-abstraction parameters The user should be able to indicate the
domain of a λ-abstraction (or, in the case of an overloaded function, the list of
domains to explore independently). This has already been formalized in Chapter 7
(Section 7.2) and implemented in the prototype.

While the reconstruction algorithm is able, in many cases, to infer a precise type for
a λ-abstraction without indications from the user, this is at the cost of performance:
type-checking is significantly slower for λ-abstractions with no type annotation (see
Section 9.2). Moreover, the reconstruction algorithm must be combined with some
heuristics in order to improve its performance, in particular the pruning of inter-
section nodes and the simplification of the tallying solutions. These heuristics may
impact the inference of the types of the parameters, and they might be subject to
changes as the language and type-checker evolve.

Consequently, in order to ensure good performance and stability of the typing (that
is, if a program type-checks with a given version of the type-checker, it should
still type-checks with later versions), we believe that function parameters should
be explicitly annotated by their type. Instead of a fully autonomous system, the
reconstruction algorithm could then be used as an interactive tool, integrated into
the development environment, which would suggest domains (or arrow types) to
the programmer for each λ-abstraction. The programmer could then simply pick,
among the suggested types, the ones to be turned into type annotations.

Having explicit type annotations also participates into having simpler and more
readable types, as only the domains selected by the programmer are considered.
For instance, the Any -> [] -> [] branch of the map function (cf. Section 9.2)
probably does not cover any use-case the programmer had in mind when writing this
function. In addition, explicit type annotations allow for better error messages, as
they indicate to the reconstruction algorithm which domain a function is supposed
to cover, and the reconstruction algorithm can then trigger a precise error message
if the body of the function is not typeable for a part of this domain.

210 Chapter 10. Discussion and Conclusion

Type decompositions for the different subexpressions In addition to the
type of λ-abstraction parameters, the annotation trees for the algorithmic type
system also specify the type decompositions to apply on bind definitions. In the
reconstruction algorithm, these type decompositions are inferred from type-cases
and are then propagated to the different bindings involved.

However, type decompositions are sometimes useful even in the absence of type-case.
For instance, consider the following program:

let test =

let b = bool () in

lOr (neg b) b

where bool has type Unit -> Bool, lOr has type (True -> Bool -> True) & (False

-> (True -> True) & (False -> False)), and neg has type (True -> False) &

(False -> True).

Intuitively, test should be typed True, as lOr (neg b) b yields true for any Boolean
value of b. However, in order to derive the type True for test, the type of b must
be decomposed in two parts, True and False. This decomposition is not inferred by
the reconstruction algorithm, as the program does not contain any type-case, and
thus the type Bool is inferred instead of True.

In order to increase the expressivity of our type system, we can give the programmer
the ability to impose a type decomposition on any subexpression. This feature has
been added in the prototype, inferring the type True for the following definition:

let test =

let b = (bool () : True ; False) in

lOr (neg b) b

The syntax (bool () : True ; False) means that the type of the subexpression
bool () should be decomposed into True and False.

Here, the decomposition True ; False already covers the type of the expression
bool (), so the reconstruction algorithm only has to split the type of the binding
variable x associated to bool (): when reconstructing the atom corresponding to
(bool () : True ; False), it simply yields a Splitptx : Trueu, typ, typq result.

However, if the user writes a split annotation (e : T1 ; ... ; Tn) where the
decomposition T1 ; ... ; Tn does not cover the type of e, the reconstruction
algorithm first tries to turn the type of e into a subtype of T1 | ... | Tn using
tally_inferp.q. This notation (e : T1 ; ... ; Tn) is thus a generalization of type
constraints defined in Section 7.4, that allows the user to express a type constraint
and to force a type decomposition at the same time.

Note that a type decomposition could also be forced just by introducing a (seman-
tically insignificant) type-case, for instance:

10.2. Towards completeness 211

let test =

let b = bool () in

if b is True then lOr (neg b) b else lOr (neg b) b

Instantiations for polymorphic applications When typing an application x1 x2,
the algorithmic type system instantiates x1 and x2 according to two sets of substi-
tutions Σ1 and Σ2 in the annotation tree.

These two sets of substitutions are computed by the reconstruction system using
tallying. Even though the tallying algorithm is complete, the instance may admit
no solution even for valid applications, because it may be necessary to expand the
type of x1 and/or x2 (see Section 6.5.2).

For instance, the application f id with f:(Int -> Int) & (Bool -> Bool) ->

Any and id:’a -> ’a can only be reconstructed by our system if the type of id is
expanded to (’a -> ’a) & (’b -> ’b) (in which case the reconstruction system
finds the substitution t’a⇝ Int ; ’b⇝ Boolu). Sometimes, the application can be
typed without performing expansion, but with a resulting type that is less general
than if an expansion was performed. This is the case, for instance, when typing
f x with f:(’a -> ’a) -> (’a -> ’a) and x:(Int -> Int) | (Bool -> Bool).
If no expansion is performed, the type reconstructed for this application is Empty

-> Empty, while it could be (Int -> Int) | (Bool -> Bool) by performing one
expansion to the type of f.

Some systems perform expansion automatically based on heuristics, such as
(Castagna et al., 2015, Appendix C.2.3). However, this offers no formal guarantees,
and adds even more complexity to the (already complex) reconstruction algorithm.
Performing an expansion is expensive, as it can make the tallying instance much
longer to solve (the number of substitutions needed to characterize the solutions
may greatly increase as the number of polymorphic type variables increases).

Our solution is to perform an expansion only when it is suggested by an explicit
annotation from the programmer. The programmer can annotate an expression with
an explicit conjunction of types, for instance for the previous example, f could be
annotated with the types (Int -> Int) -> (Int -> Int) and (Bool -> Bool)

-> (Bool -> Bool). The type system then checks that these annotated types are
each (supertype of) an instance of the type of f. Then, it types the application by
considering that f has type ((Int -> Int) -> (Int -> Int)) & ((Bool -> Bool)

-> (Bool -> Bool)). As this type is a conjunction of two different instances of f,
it couldn’t have been inferred by a tallying instance without performing expansion.

This feature has been added to the prototype. Our example can be writ-
ten as follows, where test_expansion does not perform any expansion while
test_expansion_annot performs one expansion on the type of f according to the
user annotation:

let f = < (’a -> ’a) -> (’a -> ’a) >

212 Chapter 10. Discussion and Conclusion

let x = < (Int -> Int) | (Bool -> Bool) >

(∗ Arrow ∗)
let test_expansion = f x

(∗ (Int -> Int) | (Bool -> Bool) ∗)
let test_expansion_annot =

(f :> ((Int -> Int) -> (Int -> Int)) ;

((Bool -> Bool) -> (Bool -> Bool))) x

In this code, the syntax (expr :> T1 ; T2) denotes a (double) type coercion: the
type system checks that the type inferred for expr has an instance that is a subtype
of T1, and that it has another instance that is a subtype of T2. If so, it types the
expression (expr :> T1 ; T2) with the type T1 & T2. There can be more than two
types: for an expression (expr :> T1 ; ... ; Tn), the type system checks each
type T1, T2, ..., Tn separately, and then uses the conjunction of all the Ti as a type
for (expr :> T1 ; ... ; Tn).

Note that the type coercion operator (expr :> T1 ; ... ; Tn) should not
be confused with the type constraint/split operator (expr : T1 ; ... ; Tn)

introduced in the previous point. Indeed, the former checks that expr has type T1,
..., Tn and then uses the conjunction of these types as a type for (expr :> T1 ;

... ; Tn). The latter ensures (if possible) that the type of expr is a subtype of
the disjunction of all the Ti, and then ensures that the type of expr is decomposed
according to the Ti.

Here is another example, where this time an expansion is needed for the argument
of the application:

(∗ ’a -> ’a ∗)
let id x = x

(∗ (True | 123, True | 123) ∗)
let test_expansion2 =

let f = (fun x -> (x 123, x true)) in

f id

(∗ (123, True) ∗)
let test_expansion2_annot =

let f = (fun x -> (x 123, x true)) in

f (id :> (123 -> 123) ; (True -> True))

In the definitions test_expansion2 and test_expansion2_annot, the function f is
typed (123 -> ’a) & (True -> ’b) -> (’a,’b). Giving to this function the
identity function (’a -> ’a) as parameter without performing any expansion yields
the resulting type (True | 123, True | 123) (both ’a and ’b must be substituted
by the same type True | 123), while with an expansion of the argument we obtain
the type (123, True).

10.3. Related work 213

Conclusion Although our type system does not have principality of typings, and
our reconstruction algorithm is incomplete, we can still reach the expressivity of the
declarative type system by requiring explicit type annotations in some situations:
the programmer should provide explicit type annotations when an expansion is
needed, and when the type system should perform a type decomposition that does
not originate from a type-case. It should also be recommended to annotate the
type of function parameters to make type-checking faster and to avoid relying on
the heuristics used by the type inference, as these heuristics may change in the
future. This could be done through an interactive process where the reconstruction
algorithm suggests different domains for a function, and the programmer selects the
ones they need.

10.3 Related work

10.3.1 Formalizations using set-theoretic types

Our work is based on the formalization for set-theoretic types introduced by Frisch
(2004). In particular, it relies on the definition and implementation of subtyping, and
on the notion of DNF for computing type operators. Set-theoretic types have later
been extended with type variables (Castagna and Xu, 2011), and used to design a
set-theoretic type system featuring parametric polymorphism (with explicitly-typed
λ-abstractions) by Castagna et al. (2014, 2015). The latter work also introduces
the tallying problem and an algorithm for deciding it. The approach developed
in this manuscript reuses the ideas of these articles, but with two new objectives:
performing type narrowing, and featuring a type inference capable of reconstructing
types for polymorphic and overloaded functions.

Type narrowing In our approach, the essence of occurrence typing is captured
by the combination of the union-elimination rule with three simple rules for type-
cases ([0], [P1] and [P2]). In the algorithmic type system, the union-elimination rule
is implemented by using MSC forms. We first explored these ideas in a system
without parametric polymorphism and with a limited type inference in Castagna
et al. (2022b).

Other approaches based on set-theoretic types implement type narrowing differ-
ently. In particular, Schimpf et al. (2023) and Castagna et al. (2023) have developed
set-theoretic type systems for the languages Erlang and Elixir respectively. These
languages feature guarded pattern matching, allowing to express dynamic conditions
over the type of an expression. When typing the branch associated to a guarded
pattern, some assumptions can be made about the type of the variables appearing in
the guard. The type systems developed by Schimpf et al. (2023) and Castagna et al.
(2023) perform type narrowing directly in the typing rule for patterns. As the exact
set of values captured by a guard cannot always be expressed as a type (in particu-
lar, guards can test the equality between two variables), they define an operator to
compute a type that over-approximates this set, and another operator to compute

214 Chapter 10. Discussion and Conclusion

a type that under-approximates it. Those operators are then used to perform type
narrowing and to check the exhaustiveness of a pattern-matching. This is different
from our approach, where type narrowing is not performed at the level of type-
cases (or pattern-matching expressions) but upstream, using the union-elimination
rule to decompose the type of variables. While our approach is more general and
fully captures the essence of occurrence typing, allowing to narrow the type of any
subexpression (applications, projections, etc.), it comes at the cost of performance,
as applying the union-elimination rule requires typing the same subexpression mul-
tiple times.

Inference of function types Inferring the type of λ-abstractions in a set-
theoretic type system is not very common: most set-theoretic type systems
use explicitly-typed λ-abstractions. Still, this problematic has been explored by
Castagna et al. (2016b) and further developed by Petrucciani (2019). In their work,
type inference is performed by encoding expressions into a language of constraints,
mostly consisting in subtyping constraints. Then, these constraints are solved all
at once by an algorithm that uses tallying. This approach is faster than our, as
it does not require backtracking, however it only infers single-arrow types for λ-
abstractions (overloaded behaviors are not captured). In comparison, our work does
infer intersection types for functions, capturing overloaded behaviors, but this has a
cost in terms of performance since backtracking is necessary during the reconstruc-
tion. Note that backtracking might still be necessary in the approach of Petrucciani
(2019), but in a more subtle way. Indeed, for a given top-level definition, the set
of constraints generated by their inference system may have several solutions, in
which case one solution is chosen over the others. Sometimes, this choice might be
challenged later, requiring either to backtrack in order to make another choice, or
to fail and ask for user type annotations.

10.3.2 Other formalizations

Using set-theoretic types is not the only option to define subtyping. In the section,
we compare our type system with other approaches that do not rely on semantic
subtyping. In particular, we focus on piq work on the union-elimination rule and
on occurrence typing, piiq work on intersection types and the expression of over-
loaded behaviors, and piiiq work on type inference for Hindley-Milner systems and
intersection type systems.

Union-elimination and occurrence typing The use of a union-elimination
rule in a type system has been studied by Barbanera et al. (1995). In addition to
a union-elimination rule, their type system features a rule for the introduction of
unions and for the elimination of intersections: this is different from our approach,
where the introduction of unions and the elimination of intersections derive from
the subtyping relation on set-theoretic types (rule [ď]). The novelty of our work

10.3. Related work 215

is to combine the union-elimination rule with three basic rules for type-cases, thus
capturing the essence of occurrence typing.

This approach to occurrence typing is very different from the approach of Tobin-
Hochstadt and Felleisen (2008, 2010) implemented in Typed Racket. In this and
subsequent work, types are annotated by two logical propositions that record the
type of the input depending on the (Boolean) value of the output. For instance,
the type of the number? function states that when the output is true, then the
argument has type Number, and when the output is false, the argument does not.
These propositions are propagated and used in conditionals to refine the type of
variables in the “then” and “else” branches. However, this analysis only focuses
on a particular set of pure operations. Contrary to these works, we try not to
depend on an external logic but, rather, to express these conditions with set-theoretic
types. Our approach is more global since, not only our analysis strives to infer type
information by analyzing all types of results (and not just true or false), but also
tries to perform this analysis for all possible expressions (and not just for a restricted
set of operations). This allows our system to type all the examples given in Tobin-
Hochstadt and Felleisen (2010) and, contrary to the cited work, to do so without
needing any type annotation.

Intersection types and overloaded behaviors The use of trees to annotate
calculi with full-fledged intersection types is common. In the presence of explicitly-
typed overloaded functions, one must be able to precisely describe how the types
of nested λ-abstractions relate to the various “branches” of the outermost function.
The work most similar to ours is Liquori and Ronchi Della Rocca (2007), since the
deductions are performed on pairs of marked terms and proof terms. A marked
term is an untyped term where variables are marked with integers and a proof term
is a tree that encodes the structure of the typing derivation and relates marks to
types. Other approaches, such as Ronchi Della Rocca (2002); Wells et al. (2002);
Bono et al. (2008), duplicate the term typed with an intersection, such that each
copy corresponds exactly to one member of the intersection. Lastly, the work of
Wells and Haack (2002) does not duplicate terms but rather decorate λ-abstractions
with a richer concept of branching shape which essentially allows one to give names
to the various branches of an overloaded function and to use these names in the
annotations of nested λ-abstraction. Note that none of these works features type
reconstruction, which was our main motivation to eschew annotations within terms,
since the backtracking nature of our reconstruction would imply rewriting terms
over and over.

Work by Oliveira et al. (2016) and Rioux et al. (2023) study disjoint intersection
and union types. They allow expressing overloaded behaviors by a general deter-
ministic merge operator (which may also work on non-functional values, such as
records). In our work, we do not have a general merge operator: overloaded behav-
iors only emerge through the use of type-case expressions (or the application of an
overloaded function). Our work can be extended with pattern-matching, in which

216 Chapter 10. Discussion and Conclusion

case the first matching branch is selected. This is an approach different from the
one used with disjoint intersection types, where branches are disjoint and have no
priority, and where ambiguous programs are rejected using a notion of mergeability
and distinguishability. These notions make it possible to define a general merge
operator and to support nested composition, which may be useful in some contexts
such as compositional programming (Zhang et al., 2021).

Type inference Our type reconstruction algorithm combines several ideas from
prior works on type inference. When thinking about type inference, the first type
systems that come in mind are Hindley-Milner type systems. Hindley-Milner type
systems have first-order prenex polymorphism, principal types, and type inference
is decidable: Damas and Milner (1982) describes a simple method, referred as algo-
rithm W, for inferring types using unification. Our current approach for reconstruc-
tion takes inspiration from algorithm W, where λ-abstracted variables are first given
a fresh type α, which is then substituted as required while going through the body.
Algorithm W uses unification to compute, for each application, the substitution to
apply to the current context in order for this application to be typeable. In our
case, we rely on tallying instead of unification as we have semantic subtyping. The
main difference is that, while unification either returns one principal substitution
or fail, tallying returns a set of substitutions. The consequence is that, while algo-
rithm W can just apply the substitution to its context and continue typing the rest
of the expression, we need to explore the different solutions using an intersection
annotation1.

Inference for ML systems with subtyping, unions, and intersections has been
studied in MLsub (Dolan and Mycroft, 2017) and extended with richer types and a
limited form of negation in MLstruct (Parreaux and Chau, 2022). Both work trade
expressivity in favor of principality. They define a lattice of types and an algebraic
subtyping relation that ensures principality, but forbids intersections of arrow types.
This precludes them from capturing overloaded behavior of functions, but allows
them to define a polymorphic type inference with principal types. We justify our
choice of set-theoretic types, with no principality and a complex inference, by our
aim to type dynamic languages, such as Erlang or JavaScript, where overloading plays
an important role. We favor the expressivity necessary to type many idioms of these
languages, and rely on user-defined annotations when necessary to compensate for
the incompleteness of type inference.

Jim (2000) presents a polar type system which features intersections and para-
metric polymorphism. In Jim’s type system, quantifiers may appear only in positive
positions in types, while intersections may only appear in negative positions. This
yields a system that is more expressive than rank-2 intersection types, and therefore
more expressive than ML. Furthermore, the system features principal types, and a
decidable type inference. Some aspects of this work are similar to ours, in particular
the use of MGS, an algorithm to compute the most general solution to a (syntactic)

1In addition, it is necessary to backtrack in order to retype some intermediate definitions.

10.3. Related work 217

sub-typing problem, that plays the same role as our tallying algorithm. Despite
these similarities, the approaches differ in the kind of programs they handle: in Jim
(2000), intersections are only deduced by applying higher-order function parameters
to arguments of distinct types within the body of a function, while in our approach,
they can also be caused by a type-case.

In a recent work, Parreaux et al. (2024) define Ftďu, a λ-calculus with first-class
polymorphism (in particular, quantification is not prenex and can happen in the
left-hand side of an arrow) and MLstruct-like subtyping. It features intersections
and unions, but the use of those is restricted: intersections can only appear in neg-
ative positions, and unions can only appear in positive positions. They show that
this is equivalent to having first-class polymorphism with multiple bounds on type
variables. They define a type inference for this system, SuperF, inspired in part
by the polar type system of Jim (2000). In practice, SuperF yields better results
than all first-class-polymorphic type inference systems proposed so far, although
it is incomplete: for instance, it can infer the type p123, Trueq for the expression
pλx.px 123, x Trueqq id. This approach takes a different direction from ours: while
we choose to restrict polymorphism to be prenex, they use unrestricted first-order
polymorphism but restrict the use of intersections and unions in negative and posi-
tive positions respectively (which makes it impossible to capture the behavior of an
overloaded function at top-level).

Ângelo and Florido (2022) provide a principal type inference for a type system
with rank-2 intersection types2. In their work, overloaded behaviors are expressible
using intersection types, but they are limited by the rank-2 restriction. Union types
are not supported, nor are equirecursive types (actually, their work does not feature
a general notion of subtyping between two arbitrary types). Their inference does
not require backtracking: it generates a set of constraints that are then solved using
a set unification algorithm. This approach for inference has some similarities with
the one by Castagna et al. (2016b) improved and further developed by Petrucciani
(2019) in a context with set-theoretic types, where the set unification algorithm is
replaced by tallying in the presence of subtyping.

10.3.3 Dynamic languages

The language Julia is dynamic, offering the possibility to test the type of an ex-
pression at run-time, and yet functions can be annotated with types. However,
these type annotations are not intended for type safety, but rather semantics, since
they are used to determine, at run-time, which definition of an overloaded function
should be called depending on the type of the parameters (dynamic dispatch). The
dynamic dispatch of Julia is quite powerful as it takes into account the type of all
the arguments passed to the function, following a policy referred as triangular dis-
patch. However, this can lead to two kinds of errors at run-time: piq no definition
of the function is compatible with the types of the arguments given, or piiq more

2A type t satisfies the rank-2 restriction if no path from the root of the syntactic tree of t to an
intersection passes to the left of 2 or more arrows.

218 Chapter 10. Discussion and Conclusion

than one definition of the function is compatible with the types of the arguments
given, and none of these definitions is strictly more specific than the others (thus,
which function to call is ambiguous). We believe our type system could be applied
to a language such as Julia in order to detect some of these errors statically: our
types are expressive enough to capture those of Julia (in particular, we have sin-
gleton types and union types) and to capture the behavior of complex overloaded
functions. However, modeling the dispatch system of Julia using set-theoretic types
may be complex: in Julia, adding a definition for a function may reduce its do-
main, as it may introduce new ambiguous cases that are rejected at run-time. It
is different from the behavior of the extended type-cases introduced in Chapter 7,
where the first branch that applies is selected (rather than the more specific one).
Some features of Julia are also missing from our type system and would require
future work, such as the support for abstract data types with nominal subtyping
(cf. Section 10.4).

Other work is aimed at adding a static type system to an existing dynamic
language. This is the case of TypeScript (Microsoft) for JavaScript, or Mypy (Jukka
Lehtosalo) for Python (Python already has a syntax for type annotations, but no
static type checker). Unfortunately, these approaches lack a formal foundation.
They are not designed to provide strong static guarantees (the type checker of
TypeScript is unsafe on many aspects, prioritizing flexibility for the programmer and
time performance over type safety), but rather to detect some type inconsistencies
(but not all of them), and to provide type information for the documentation and
the toolchain. Mypy provides a type inference for the parameters of functions, but it
is limited and hard to predict. TypeScript does not provide such type inference. We
hope that our work could form the basis of a formal static type system for dynamic
languages, providing more expressive types (Python does not have intersection types,
and neither Python nor TypeScript have negation types), occurrence typing, type
inference, and strong type safety guarantees. However, our type system cannot be
applied as it stands to these languages: in addition to the missing features (row
polymorphism, support for side effects, etc.), compromises will have to be found in
order to obtain homogeneous time performance and not to constrain the programmer
(for instance with the integration of gradual typing, cf. Section 10.4).

Another work that adds a static type system to an existing dynamic language
is Luau. Luau uses a type system featuring semantic subtyping to statically type
Lua code. In addition to the safety guarantees it brings, the static type information
is used by their interpreter to perform optimizations. Their implementation of
semantic subtyping, which they call pragmatic semantic subtyping, is inspired by set-
theoretic types, though it differs from the set-theoretic interpretation for functions
(Jeffrey, 2022). As with set-theoretic types, they support singleton types, unions,
and intersections. However, negation is only supported on test types (those that
can appear in their type-cases), and not on structural types (in particular, arrow
types). Their type system is gradual: it features a type any that can be used as
an arbitrary type (it should not be mistaken with our top type 1, which they call
unknown). Overall, they have opted for a pragmatic approach that restricts some

10.4. Conclusion and future work 219

features of set-theoretic types (in particular, the absence of arbitrary negation types
is a limitation for implementing our general approach for occurrence typing) and
with a limited type inference, but with an efficient type checking algorithm that
shows homogeneous performance.

10.4 Conclusion and future work

This work aims at providing a formal and expressive type system for dynamic lan-
guages, where type-cases can be used to give functions an overloaded behavior.
It features a type inference that mixes both parametric polymorphism (for modu-
larity) and intersection polymorphism (to capture overloaded behaviors). In that
sense, our work is more than a simple study on typeability: as a matter of fact,
monomorphic intersection and union types are sufficient to type a closed program
where all function applications are known, but this would be bad from a language
design point of view, and it is the reason why people program using ML-style pro-
gramming languages rather than intersection based ones. Separate compilation and
modular definitions are requirements of any reasonable programming language. The
essence of this work is thus to challenge the limits of how much precision one can ob-
tain (through intersection types)—ideally precise enough to type idioms of dynamic
languages—while preserving modularity (thanks to parametric polymorphism).

While this work is a step towards a better static typing of dynamic languages,
several key features are still missing. First, the presence of side effects may invalidate
our approach: if the [_] rule in Figure 4.1 is applied to two different occurrences
of an expression e1 that is not pure, then the rule may type an expression that
yields a run-time type error. This can be seen on the algorithmic system, where the
transformation into a MSC form binds the two occurrences of e1 to the same variable,
thus wrongly assuming that they both yield the same result. Strictly speaking, our
algorithmic approach does not require expressions to be pure; it just needs that
when two occurrences of an expression may produce two distinct values, then these
two occurrences must be bound by two different binds. Having only pure expressions
is a straightforward way to satisfy this property. Having each subexpression bound
to a distinct variable (i.e., no sharing, that is, a less precise system, in which the
union rule is never used) is a way to retain safety in the presence of side effects.
But between these two extrema, there is a whole palette of less coarse solutions that
make it possible to apply our approach in the presence of side effects. This poses two
main challenges: piq how to separate problematic expressions from non-problematic
ones which, in terms of the type system, corresponds to characterizing a class of
subexpressions e1 that can be safely used in rule [_]; and piiq how to do so before
our type inference, namely when putting expressions into their MSC form, at a point
when type information is not available, yet.

Second, one may want to add gradual typing (Siek et al., 2015) to our type sys-
tem. Indeed, even though we have (an incomplete) type inference, the programmer
still has to write type-safe code and to insert, sometimes, type annotations. During

220 Chapter 10. Discussion and Conclusion

a phase of experimentation, the programmer might prefer to locally drop the guaran-
tees of static typing in favor of a more hassle-free programming style. Also, gradual
typing could be of help in the presence of language features that are notoriously
difficult to type, such as the eval function: if we are able to estimate the variables
in the context that may be impacted by a call to eval, we may use gradual types
to express uncertainty about the type of these variables after the call to eval. In
addition, gradual typing is necessary if we want to apply this type system to a lan-
guage with an already large codebase, as this codebase (and in particular, libraries)
may not be typeable out of the box and thus, may require consequent work over
time to be annotated. A successful use of gradual typing to this purpose has been
achieved in TypeScript (Microsoft), where typed codebases can freely interoperate
with untyped ones, making the transition from JavaScript to TypeScript a lot easier
but at the expense of type safety. The objective of TypeScript is to add a layer of
static types on top of a dynamic language without worrying about blame when a
type inconsistency happens at run-time: this differs from the approach of Siek et al.
(2015) that aims to preserve a form of type safety by adding casts at runtime in
order to detect type inconsistencies as early as possible. The formalization of grad-
ual typing in set-theoretic types has been studied by Castagna and Lanvin (2017)
and Castagna et al. (2019). Roughly, it consists in adding a new type constructor
? (sometimes called “unknown type” or “dynamic type”) and a materialization rule
that allows substituting any occurrence of ? by any type. From an algorithmic per-
spective, the DNF of types must be extended in order to account for ?, and new type
operators have to be defined in order to get rid of the materialization rule (which is
not syntax-directed nor analytic) by “embedding” it in other rules whenever needed.

Third, depending on the targeted language, one has to consider adding support
for abstract data types with nominal subtyping. Such an extension is required, for
instance, to type the language Julia, where the user can define abstract data types
and write subtyping relations between them (for instance, abstract type SomeType

<: SuperType end). Abstract data types can be encoded in our current type
algebra using type variables: each abstract data type can be associated to a fresh
monomorphic type variable, and we can encode nominal subtyping between two
abstract data types by using an intersection. For instance, two abstract types T1 <:

T2 can be represented by the types α1 and α1^α2 respectively (with α1 and α2 two
fresh monomorphic type variables). Unfortunately, this encoding does not suffice
anymore in the presence of parametric data types (or equivalently, generic types).
The way to implement them may vary depending on the targeted language. In some
languages, parameters of generic types can be qualified with a variance: they can
be bivariant, covariant, contravariant, or invariant. This is the case, for instance,
of Python and OCaml. In other languages, such as Java and Julia, parameters of
generic types cannot be qualified with a variance (the type system treat them as
if they were invariant), but at the level of methods, bounded polymorphism can
be used in place of a built-in notion of variance: for instance, in the Julia function
definition f{T<:Real}(a::Array{T}), the type Array{T} is incomparable with every
type Array{S} where S is distinct from T (invariance), but T can be arbitrarily

10.4. Conclusion and future work 221

instantiated by any type smaller than Real.
Fourth, an important missing feature is the support of row-polymorphism: while

the present work already supports records (cf. Chapter 7), the precise typing of
functions operating over records requires row-polymorphism. This is especially im-
portant for dynamic languages where records are seamlessly used to encode both
objects and dictionaries. A first step in that direction may be to integrate the work
by Castagna (2023), which unifies dictionaries and records.

Fifth, the performance of the type reconstruction can certainly be improved by
using more sophisticated implementation techniques and heuristics on the lines we
outlined at the end of Chapter 9. Before being applicable to a real-world language,
our type-checker should ensure uniform performance. While this requirement seems
hard to reach for a fully unannotated codebase where the type of each function has
to be inferred each time it is typed, it seems a lot more realistic to achieve it for an
annotated codebase, where type inference would only be a tool for the programmers
to annotate their functions.

Lastly, an important aspect that has not been discussed is the pretty printing
of types and the generation of error messages. Finding a safety error through static
typing is an interesting feature, but it is pointless if we cannot locate it precisely
and display a clear error message to the programmer. Generating intuitive error
messages is complicated when dealing with set-theoretic types: types can be very
long, in particular recursive ones, and it may be difficult to recognize a user-defined
type alias inside a more complex type (especially for parametric type aliases). Still,
heuristics could be used to improve the readability of types. For instance, when the
programmer annotates a definition using a type alias, a special care should be taken
to recognize this type alias when pretty-printing the types within this definition.
Furthermore, this pretty-printing information should be forwarded to later code
that uses this definition. In other words, even though we use semantic subtyping,
it may be worth storing some syntactic information about the types and use it for
pretty printing. For what concerns the localization of errors, in the absence of user
type annotations, we must also rely on heuristics to prioritize the different possible
origins of errors. Even when a definition is well-typed, it might be worth raising
an error: for instance, λx. (xPInt) ?x : p42 42q is well-typed (the type inferred is
Int ^ α Ñ Int ^ α), but it is highly improbable for the expected domain of this
λ-abstraction to be Int as it makes the second branch of the type-case unreachable.
These practical considerations are independent of the core type system presented in
this manuscript, and their answers may depend on the language we are targeting.

To conclude, set-theoretic types are starting to be integrated into real-world
languages, for instance by Schimpf et al. (2023) for Erlang, by Jeffrey (2022) for
Luau, and by Castagna et al. (2023) for Elixir. We believe that, in the future, our
work could be used in these systems in order to benefit from a more precise typing of
type-cases and pattern-matching, as well as by providing an optional type inference
that can be used in conjunction with explicit type annotations.

Bibliography

Pedro Ângelo and Mário Florido. 2022. Type Inference For Rank-2 Intersection
Types Using Set Unification. In Theoretical Aspects of Computing – ICTAC 2022:
19th International Colloquium, Tbilisi, Georgia, September 27–29, 2022, Proceed-
ings (Tbilisi, Georgia). Springer-Verlag, Berlin, Heidelberg, 462–480. https:

//doi.org/10.1007/978-3-031-17715-6_29 (Cited in page 217.)

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. In-
tersection and Union Types. Inf. Comput. 119, 2 (June 1995), 202–230. https:

//doi.org/10.1006/inco.1995.1086 (Cited in pages vi, 10, 12 and 214.)

Viviana Bono, Betti Venneri, and Lorenzo Bettini. 2008. A typed lambda calculus
with intersection types. Theor. Comput. Sci. 398, 1-3 (2008), 95–113. https:

//doi.org/10.1016/j.tcs.2008.01.046 (Cited in page 215.)

Giuseppe Castagna. 2020. Covariance and Controvariance: a fresh look at an old
issue (a primer in advanced type systems for learning functional programmers).
Logical Methods in Computer Science 16, 1 (2020), 15:1–15:58. https://doi.

org/10.23638/LMCS-16(1:15)2020 (Cited in pages 22 and 168.)

Giuseppe Castagna. 2023. Typing Records, Maps, and Structs. Proc. ACM Program.
Lang. 7, ICFP, Article 196 (Sept. 2023), 45 pages. https://doi.org/10.1145/

3607838 (Cited in page 221.)

Giuseppe Castagna. 2024. Programming with Union, Intersection, and Negation
Types. Springer International Publishing, Cham, 309–378. https://doi.org/

10.1007/978-3-031-34518-0_12 (Cited in pages 7 and 20.)

Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023. The Design Principles
of the Elixir Type System. The Art, Science, and Engineering of Programming 8, 2
(Oct. 2023). https://doi.org/10.22152/programming-journal.org/2024/8/4

(Cited in pages 28, 213 and 221.)

Giuseppe Castagna and Alain Frisch. 2005. A Gentle Introduction to Seman-
tic Subtyping. In Proceedings of the 7th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (Lisbon, Portu-
gal) (PPDP ’05). Association for Computing Machinery, New York, NY, USA,
198–208. https://doi.org/10.1145/1069774.1069793 (Cited in page 20.)

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and
Intersection Types. Proc. ACM Program. Lang. 1, ICFP, Article 41 (Aug. 2017),
28 pages. https://doi.org/10.1145/3110285 (Cited in page 220.)

Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. 2022a. Re-
visiting Occurrence Typing. Science of Computer Programming 217 (mar 2022),

https://doi.org/10.1007/978-3-031-17715-6_29
https://doi.org/10.1007/978-3-031-17715-6_29
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1016/j.tcs.2008.01.046
https://doi.org/10.1016/j.tcs.2008.01.046
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.1145/3607838
https://doi.org/10.1145/3607838
https://doi.org/10.1007/978-3-031-34518-0_12
https://doi.org/10.1007/978-3-031-34518-0_12
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/3110285

224 Bibliography

102781. https://doi.org/10.1016/j.scico.2022.102781 arXiv:1907.05590
(Cited in pages 10, 24 and 100.)

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek.
2019. Gradual typing: a new perspective. Proc. ACM Program. Lang. 3, POPL,
Article 16 (jan 2019), 32 pages. https://doi.org/10.1145/3290329 (Cited in
page 220.)

Giuseppe Castagna, Mickaël Laurent, and Kim Nguyen. 2024a. Polymorphic Type
Inference for Dynamic Languages. Proceedings of the ACM on Programming
Languages 8, POPL (2024), 40. https://doi.org/10.1145/3632882 (Cited in
page 10.)

Giuseppe Castagna, Mickaël Laurent, and Kim Nguyen. 2024b. Prototype: Polymor-
phic Type Inference for Dynamic Languages. https://doi.org/10.5281/zenodo.

11203176 (Cited in pages 9, 185 and 194.)

Giuseppe Castagna, Mickaël Laurent, Kim Nguyen, and Matthew Lutze. 2022b. On
Type-Cases, Union Elimination, and Occurrence Typing. Proc. ACM Program.
Lang. 6, POPL, Article 13 (jan 2022), 31 pages. https://doi.org/10.1145/

3498674 (Cited in pages 10 and 213.)

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Poly-
morphic functions with set-theoretic types. Part 2: local type inference and
type reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL ’15). 289–302. https:

//doi.org/10.1145/2676726.2676991 (Cited in pages 8, 11, 24, 25, 33, 118, 144,
168, 211 and 213.)

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and
Luca Padovani. 2014. Polymorphic Functions with Set-Theoretic Types. Part
1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st Annual ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL ’14). 5–
17. https://doi.org/10.1145/2676726.2676991 (Cited in pages 8, 11, 33, 154
and 213.)

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyễn. 2016a. Set-Theoretic
Types for Polymorphic Variants. SIGPLAN Not. 51, 9 (sep 2016), 378–391.
https://doi.org/10.1145/3022670.2951928 (Cited in page 22.)

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016b. Set-Theoretic
Types for Polymorphic Variants. In ICFP ’16, 21st ACM SIGPLAN International
Conference on Functional Programming. 378–391. https://doi.org/10.1145/

2951913.2951928 (Cited in pages 214 and 217.)

Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic Foundation of Parametric
Polymorphism and Subtyping. In ICFP ’11: 16th ACM-SIGPLAN International

https://doi.org/10.1016/j.scico.2022.102781
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3632882
https://doi.org/10.5281/zenodo.11203176
https://doi.org/10.5281/zenodo.11203176
https://doi.org/10.1145/3498674
https://doi.org/10.1145/3498674
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/3022670.2951928
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2951913.2951928

Bibliography 225

Conference on Functional Programming. 94–106. https://doi.org/10.1145/

2034773.2034788 (Cited in pages 8, 17, 22 and 213.)

CDuce . The CDuce Compiler. CDuce. https://www.cduce.org (Cited in pages 28,
168 and 194.)

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional
Characters of Solvable Terms. Mathematical Logic Quarterly 27, 2-6 (1981), 45–
58. https://doi.org/10.1002/malq.19810270205 (Cited in pages vi and 12.)

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL) (Albuquerque, New Mexico). Asso-
ciation for Computing Machinery, New York, NY, USA, 207–212. https:

//doi.org/10.1145/582153.582176 (Cited in pages ix, 10, 15, 24, 118 and 216.)

Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type In-
ference in MLsub. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (Paris, France) (POPL ’17), Giuseppe
Castagna and Andrew D. Gordon (Eds.). Association for Computing Machin-
ery, New York, NY, USA, 60–72. https://doi.org/10.1145/3009837.3009882

(Cited in page 216.)

Ecma. 2021. ECMAScript® 2021 Language Specification. https://262.

ecma-international.org/12.0/ (Cited in page 7.)

Facebook . Flow. Facebook. https://flow.org/ (Cited in page 6.)

Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation
adapté à XML. Ph. D. Dissertation. Université Paris Diderot. (Cited in pages v,
8, 11, 17, 22, 33, 148, 149, 164 and 213.)

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic sub-
typing: dealing set-theoretically with function, union, intersection, and nega-
tion types. Journal of the ACM 55, 4 (Sept. 2008), 19:1–19:64. http:

//doi.acm.org/10.1145/1391289.1391293 (Cited in pages 3, 8, 20, 24 and 70.)

Nils Gesbert, Pierre Genevès, and Nabil Layaïda. 2015. A logical approach to
deciding semantic subtyping. ACM Transactions on Programming Languages and
Systems 38, 1 (2015), 3. https://doi.org/10.1145/2812805 (Cited in page 20.)

Aviral Goel, Pierre Donat-Bouillud, Filip Křikava, Christoph M. Kirsch, and Jan
Vitek. 2021. What we eval in the shadows: a large-scale study of eval in R pro-
grams. Proc. ACM Program. Lang. 5, OOPSLA, Article 125 (oct 2021), 23 pages.
https://doi.org/10.1145/3485502 (Cited in page 5.)

Michael Greenberg. 2019. The Dynamic Practice and Static Theory of Gradual
Typing. In 3rd Summit on Advances in Programming Languages (SNAPL 2019)

https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/2034773.2034788
https://www.cduce.org
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/3009837.3009882
https://262.ecma-international.org/12.0/
https://262.ecma-international.org/12.0/
https://flow.org/
http://doi.acm.org/10.1145/1391289.1391293
http://doi.acm.org/10.1145/1391289.1391293
https://doi.org/10.1145/2812805
https://doi.org/10.1145/3485502

226 Bibliography

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 136). 6:1–6:20.
https://doi.org/10.4230/LIPIcs.SNAPL.2019.6 (Cited in page 200.)

Fritz Henglein. 1993. Type Inference with Polymorphic Recursion. ACM Trans.
Program. Lang. Syst. 15, 2 (apr 1993), 253–289. https://doi.org/10.1145/

169701.169692 (Cited in page 117.)

J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory
Logic. Trans. Amer. Math. Soc. 146 (1969), 29–60. (Cited in pages vi and 12.)

Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. 2005. Parametric Polymor-
phism for XML. Conference Record of the Annual ACM Symposium on Princi-
ples of Programming Languages 40, 50–62. https://doi.org/10.1145/1040305.

1040310 (Cited in page 20.)

Alan Jeffrey. 2022. Semantic Subtyping in Luau. Blog post. https://blog.roblox.

com/2022/11/semantic-subtyping-luau Accessed on May 6th 2023. (Cited in
pages 205, 218 and 221.)

Trevor Jim. 2000. A Polar Type System. In ICALP Workshops 2000, Proceedings
of the Satelite Workshops of the 27th International Colloquium on Automata,
Languages and Programming, Geneva, Switzerland, July 9-15, 2000, José D. P.
Rolim, Andrei Z. Broder, Andrea Corradini, Roberto Gorrieri, Reiko Heckel, Juraj
Hromkovic, Ugo Vaccaro, and Joe B. Wells (Eds.). Carleton Scientific, Waterloo,
Ontario, Canada, 323–338. (Cited in pages 216 and 217.)

Jukka Lehtosalo . Mypy. Jukka Lehtosalo. https://mypy.readthedocs.io/en/

stable/ (Cited in pages 5 and 218.)

Julia. . The Julia Programming Language. https://docs.julialang.org/ (Cited
in pages 217 and 220.)

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. 1993. Type Reconstruction in the Presence
of Polymorphic Recursion. ACM Trans. Program. Lang. Syst. 15, 2 (apr 1993),
290–311. https://doi.org/10.1145/169701.169687 (Cited in page 117.)

Laurie Kirby and Jeff Paris. 1982. Accessible Independence Results
for Peano Arithmetic. Bulletin of the London Mathematical Soci-
ety 14, 4 (1982), 285–293. https://doi.org/10.1112/blms/14.4.285

arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/14.4.285
(Cited in page 140.)

Luigi Liquori and Simona Ronchi Della Rocca. 2007. Intersection-types à la Church.
Inf. Comput. 205, 9 (2007), 1371–1386. https://doi.org/10.1016/j.ic.2007.

03.005 (Cited in page 215.)

Luau. . Luau. https://luau-lang.org/ (Cited in pages 205 and 218.)

https://doi.org/10.4230/LIPIcs.SNAPL.2019.6
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/1040305.1040310
https://doi.org/10.1145/1040305.1040310
https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://blog.roblox.com/2022/11/semantic-subtyping-luau
https://mypy.readthedocs.io/en/stable/
https://mypy.readthedocs.io/en/stable/
https://docs.julialang.org/
https://doi.org/10.1145/169701.169687
https://doi.org/10.1112/blms/14.4.285
https://doi.org/10.1016/j.ic.2007.03.005
https://doi.org/10.1016/j.ic.2007.03.005
https://luau-lang.org/

Bibliography 227

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recur-
sive polymorphic types. Information and Control 71, 1 (1986), 95–130. https:

//doi.org/10.1016/S0019-9958(86)80019-5 (Cited in pages vi, 12 and 41.)

Per Martin-Löf. 1994. Analytic and Synthetic Judgments in Type The-
ory. Springer Netherlands, Dordrecht, 87–99. https://doi.org/10.1007/

978-94-011-0834-8_5 (Cited in pages viii and 14.)

Microsoft a. The Monaco Editor. Microsoft. https://microsoft.github.io/

monaco-editor/ (Cited in page 194.)

Microsoft b. TypeScript. Microsoft. https://www.typescriptlang.org/ (Cited in
pages 6, 218 and 220.)

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput.
System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)

90014-4 (Cited in pages vi, 12, 38, 63 and 189.)

OCaml. 2023. Standard Library: Map module. Github repository. https://github.

com/ocaml/ocaml/blob/trunk/stdlib/map.ml (Cited in page 203.)

Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint Intersection
Types. SIGPLAN Not. 51, 9 (sep 2016), 364–377. https://doi.org/10.1145/

3022670.2951945 (Cited in page 215.)

Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau.
2024. When Subtyping Constraints Liberate: A Novel Type Inference Approach
for First-Class Polymorphism. Proc. ACM Program. Lang. 8, POPL, Article 48
(jan 2024), 33 pages. https://doi.org/10.1145/3632890 (Cited in page 217.)

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type Inference in a
Boolean Algebra of Structural Types. Proc. ACM Program. Lang. 6, OOPSLA2,
Article 141 (oct 2022), 30 pages. https://doi.org/10.1145/3563304 (Cited in
pages 207 and 216.)

Tommaso Petrucciani. 2019. Polymorphic Set-Theoretic Types for Functional Lan-
guages. Ph.D. Dissertation. Joint Ph.D. Thesis, Università di Genova and Univer-
sité Paris Diderot. https://tel.archives-ouvertes.fr/tel-02119930 Available
at https://tel.archives-ouvertes.fr/tel-02119930. (Cited in pages 33, 214
and 217.)

Tommaso Petrucciani, Giuseppe Castagna, Davide Ancona, and Elena Zucca. 2018.
Semantic Subtyping for Non-Strict Languages. In TYPES18: 24th International
Conference on Types for Proofs and Programs (LIPIcs, Vol. 130), Peter Dybjer,
José Espírito Santo, and Luís Pinto (Eds.). 4:1–4:24. (Cited in page 209.)

Python documentation. 2021. What’s New In Python 3.10. https://docs.python.

org/3/whatsnew/3.10.html (Cited in page 163.)

https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1007/978-94-011-0834-8_5
https://doi.org/10.1007/978-94-011-0834-8_5
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://www.typescriptlang.org/
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://github.com/ocaml/ocaml/blob/trunk/stdlib/map.ml
https://github.com/ocaml/ocaml/blob/trunk/stdlib/map.ml
https://doi.org/10.1145/3022670.2951945
https://doi.org/10.1145/3022670.2951945
https://doi.org/10.1145/3632890
https://doi.org/10.1145/3563304
https://tel.archives-ouvertes.fr/tel-02119930
https://tel.archives-ouvertes.fr/tel-02119930
https://docs.python.org/3/whatsnew/3.10.html
https://docs.python.org/3/whatsnew/3.10.html

228 Bibliography

Nick Rioux, Xuejing Huang, Bruno C. d. S. Oliveira, and Steve Zdancewic. 2023.
A Bowtie for a Beast: Overloading, Eta Expansion, and Extensible Data Types
in F’. Proc. ACM Program. Lang. 7, POPL, Article 18 (jan 2023), 29 pages.
https://doi.org/10.1145/3571211 (Cited in page 215.)

John Alan Robinson. 1965. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM 12, 1 (jan 1965), 23–41. https://doi.org/10.1145/321250.

321253 (Cited in page 118.)

Simona Ronchi Della Rocca. 2002. Intersection Typed lambda-calculus. Electr.
Notes Theor. Comput. Sci. 70, 1 (2002), 163–181. https://doi.org/10.1016/

S1571-0661(04)80496-1 (Cited in page 215.)

Amr Sabry and Matthias Felleisen. 1992. Reasoning about programs in continuation-
passing style. SIGPLAN Lisp Pointers V, 1 (jan 1992), 288–298. https://doi.

org/10.1145/141478.141563 (Cited in page 91.)

Albert Schimpf, Stefan Wehr, and Annette Bieniusa. 2023. Set-Theoretic Types
for Erlang. In Proceedings of the 34th Symposium on Implementation and Ap-
plication of Functional Languages (Copenhagen, Denmark) (IFL ’22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 4, 14 pages.
https://doi.org/10.1145/3587216.3587220 (Cited in pages 213 and 221.)

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
2015. Refined Criteria for Gradual Typing. In 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 32). 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.

2015.274 (Cited in pages 219 and 220.)

Christopher Strachey. 1967. Fundamental concepts in programming languages. Lec-
ture notes for International Summer School in Computer Programming, Copen-
hagen. (Cited in page 6.)

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation
of Typed Scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Francisco, California,
USA) (POPL ’08). ACM, New York, NY, USA, 395–406. https://doi.org/10.

1145/1328438.1328486 (Cited in pages 9 and 215.)

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical types for untyped lan-
guages. In Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming (Baltimore, Maryland, USA) (ICFP ’10). ACM, New
York, NY, USA, 117–128. https://doi.org/10.1145/1863543.1863561 (Cited
in pages 7 and 215.)

Types 2019. What exactly should we call syntax-directed inference rules? Dis-
cussion on the Types mailing list. http://lists.seas.upenn.edu/pipermail/

types-list/2019/002138.html. (Cited in pages viii and 14.)

https://doi.org/10.1145/3571211
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/S1571-0661(04)80496-1
https://doi.org/10.1016/S1571-0661(04)80496-1
https://doi.org/10.1145/141478.141563
https://doi.org/10.1145/141478.141563
https://doi.org/10.1145/3587216.3587220
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html

Bibliography 229

Joseph Brian Wells, Allyn Dimock, Robert J Muller, and Franklyn Albin Turbak.
2002. A calculus with polymorphic and polyvariant flow types. J. Funct. Program.
12, 3 (2002), 183–227. https://doi.org/10.1017/S0956796801004245 (Cited in
page 215.)

Joe B. Wells and Christian Haack. 2002. Branching Types. In ESOP ’02 (LNCS,
Vol. 2305). Springer, 115–132. https://doi.org/10.1007/3-540-45927-8_9

(Cited in page 215.)

Weixin Zhang, Yaozhu Sun, and Bruno C. D. S. Oliveira. 2021. Compositional
Programming. ACM Trans. Program. Lang. Syst. 43, 3, Article 9 (sep 2021),
61 pages. https://doi.org/10.1145/3460228 (Cited in page 216.)

https://doi.org/10.1017/S0956796801004245
https://doi.org/10.1007/3-540-45927-8_9
https://doi.org/10.1145/3460228

	I Context and Motivations
	Introduction
	Dynamic languages
	Motivations
	Contributions
	Timeline and scientific production
	Outline

	Background
	Set-theoretic types
	Type substitutions
	Type interpretation
	Semantic subtyping
	Disjunctive Normal Form and type operators
	The tallying problem

	Core Language
	Syntax
	Semantics
	Challenges
	Occurrence typing
	Overloaded functions
	Modularity
	Type inference

	II Core Formalization
	Declarative Type System
	Formalization
	Polymorphic and monomorphic types
	Type system

	Canonical typing derivations
	Alternative form of the declarative type system
	Normalization of typing derivations

	Type safety
	The parallel semantics
	Elimination of instantiations and generalizations
	Deriving negations of arrows
	Subject reduction
	Progress
	Type safety for the source semantics

	Algorithmic Type System
	Maximal Sharing Canonical forms
	Canonical forms
	Maximal Sharing Canonical forms

	Annotations and algorithmic type system
	Equivalence with the declarative type system
	Soundness
	Completeness

	Reconstruction Algorithm
	The tallying algorithm
	Main reconstruction algorithm
	Substitution inference system
	Backpropagation of splits
	Discussion about the reconstruction algorithm
	Termination
	Incompleteness

	III Towards a Practical Language
	Extensions
	Records
	User type annotations
	Let-bindings
	Extended type-cases
	Pattern matching

	Practical Aspects
	Intersection nodes pruning
	An explosion of the number of branches
	A heuristic for trimming redundant branches

	Type decompositions pruning
	Simplification of types
	Simplification of function types
	Simplification of tallying solutions

	Memoization

	Prototype Implementation
	Presentation of the prototype
	Language and features
	Architecture of the implementation

	Results and performance
	Type inference
	Performance

	Discussion and Conclusion
	Limitations
	Towards completeness
	Related work
	Formalizations using set-theoretic types
	Other formalizations
	Dynamic languages

	Conclusion and future work

	Bibliography

